1. Large cortical bone pores in the tibia are associated with proximal femur strength
- Author
-
Iori, Gianluca, Schneider, Johannes, Reisinger, Andreas, Heyer, Frans, Peralta , Laura, Wyers, Caroline, Grasel, Melanie, Barkmann, Reinhard, Gluer, Claus C., van den Bergh, J.P., Pahr, Dieter, Raum, Kay, Charité - UniversitätsMedizin = Charité - University Hospital [Berlin], Maastricht University Medical Centre (MUMC), Maastricht University [Maastricht], Laboratoire d'Imagerie Biomédicale (LIB), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), King‘s College London, Imaging Sciences and Biomedical Engineering Division [London], Guy's and St Thomas' Hospital [London]-King‘s College London, Christian-Albrechts-Universität zu Kiel (CAU), Vienna University of Technology (TU Wien), Interne Geneeskunde, Promovendi NTM, and RS: NUTRIM - R3 - Respiratory & Age-related Health
- Subjects
musculoskeletal diseases ,Adult ,Male ,[SDV]Life Sciences [q-bio] ,Science ,MICROARCHITECTURAL PARAMETERS ,DISTAL RADIUS ,Absorptiometry, Photon ,BMD ,Bone Density ,Cortical Bone ,Humans ,FEMORAL FRACTURE LOAD ,Aged ,DXA ,Aged, 80 and over ,Tibia ,Femur Neck ,WOMEN ,Correction ,HIP FRACTURE ,X-Ray Microtomography ,Middle Aged ,musculoskeletal system ,HR-PQCT ,Medicine ,Female ,Porosity ,HIGH-RESOLUTION ,600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit ,FRAGILITY - Abstract
International audience; Alterations of structure and density of cortical bone are associated with fragility fractures and can be assessed in vivo in humans at the tibia. Bone remodeling deficits in aging women have been recently linked to an increase in size of cortical pores. In this ex vivo study, we characterized the cortical microarchitecture of 19 tibiae from human donors (aged 69 to 94 years) to address, whether this can reflect impairments of the mechanical competence of the proximal femur, i.e., a major fracture site in osteoporosis. Scanning acoustic microscopy (12 μm pixel size) provided reference microstructural measurements at the left tibia, while the bone vBMD at this site was obtained using microcomputed tomography (microCT). The areal bone mineral density of both left and right femoral necks (aBMDneck) was measured by dual-energy X-ray absorptiometry (DXA), while homogenized nonlinear finite element models based on high-resolution peripheral quantitative computed tomography provided hip stiffness and strength for one-legged standing and sideways falling loads. Hip strength was associated with aBMDneck (r = 0.74 to 0.78), with tibial cortical thickness (r = 0.81) and with measurements of the tibial cross-sectional geometry (r = 0.48 to 0.73) of the same leg. Tibial vBMD was associated with hip strength only for standing loads (r = 0.59 to 0.65). Cortical porosity (Ct.Po) of the tibia was not associated with any of the femoral parameters. However, the proportion of Ct.Po attributable to large pores (diameter > 100 μm) was associated with hip strength in both standing (r = -0.61) and falling (r = 0.48) conditions. When added to aBMDneck, the prevalence of large pores could explain up to 17% of the femur ultimate force. In conclusion, microstructural characteristics of the tibia reflect hip strength as well as femoral DXA, but it remains to be tested whether such properties can be measured in vivo.
- Published
- 2019