1. Inductive Freeness of Ziegler's Canonical Multiderivations for Restrictions of Reflection Arrangements
- Author
-
Hoge, Torsten, Roehrle, Gerhard, and Wiesner, Sven
- Subjects
FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,Group Theory (math.GR) ,Mathematics - Group Theory ,52C35, 14N20, 32S22, 51D20 - Abstract
Let $\mathcal A$ be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction $\mathcal A''$ of $\mathcal A$ to any hyperplane endowed with the natural multiplicity $\kappa$ is then a free multiarrangement. Recently, in [Hoge-R\"ohrle2022], an analogue of Ziegler's theorem for the stronger notion of inductive freeness was proved: if $\mathcal A$ is inductively free, then so is the free multiarrangement $(\mathcal A'',\kappa)$. In [Hoge-R\"ohrle2018], all reflection arrangements which admit inductively free Ziegler restrictions are classified. The aim of this paper is an extension of this classification to all restrictions of reflection arrangements utilizing the aforementioned fundamental result from [Hoge-R\"ohrle2022]., Comment: v1 21 pages. arXiv admin note: text overlap with arXiv:1705.02767, arXiv:2204.09540
- Published
- 2022
- Full Text
- View/download PDF