1. Measurement of the orientation of buffer-gas-cooled, electrostatically-guided ammonia molecules
- Author
-
Steer, Edward W., Petralia, Lorenzo S., Western, Colin M., Heazlewood, Brianna R., and Softley, Timothy P.
- Subjects
Ammonia ,Cold molecules ,Quadrupole guide ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,Polarisation ,Spectroscopy ,Atomic and Molecular Physics, and Optics ,Alignment - Abstract
The extent to which the spatial orientation of internally and translationally cold ammonia molecules can be controlled as molecules pass out of a quadrupole guide and through different electric field regions is examined. Ammonia molecules are collisionally cooled in a buffer gas cell, and are subsequently guided by a three-bend electrostatic quadrupole into a detection chamber. The orientation of ammonia molecules is probed using (2+1) resonance-enhanced multiphoton ionisation (REMPI), with the laser polarisation axis aligned both parallel and perpendicular to the time-of-flight axis. Even with the presence of a near-zero field region, the ammonia REMPI spectra indicate some retention of orientation. Monte Carlo simulations propagating the time-dependent Schrödinger equation in a full basis set including the hyperfine interaction enable the orientation of ammonia molecules to be calculated – with respect to both the local field direction and a space-fixed axis – as the molecules pass through different electric field regions. The simulations indicate that the orientation of ∼95% of ammonia molecules in JK=11 could be achieved with the application of a small bias voltage (17V) to the mesh separating the quadrupole and detection regions. Following the recent combination of the buffer gas cell and quadrupole guide apparatus with a linear Paul ion trap, this result could enable one to examine the influence of molecular orientation on ion-molecule reaction dynamics and kinetics.
- Published
- 2017
- Full Text
- View/download PDF