1. AD-BERT: Using Pre-trained contextualized embeddings to Predict the Progression from Mild Cognitive Impairment to Alzheimer's Disease
- Author
-
Mao, Chengsheng, Xu, Jie, Rasmussen, Luke, Li, Yikuan, Adekkanattu, Prakash, Pacheco, Jennifer, Bonakdarpour, Borna, Vassar, Robert, Jiang, Guoqian, Wang, Fei, Pathak, Jyotishman, and Luo, Yuan
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Computer Science - Computation and Language ,Computation and Language (cs.CL) ,Machine Learning (cs.LG) - Abstract
Objective: We develop a deep learning framework based on the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model using unstructured clinical notes from electronic health records (EHRs) to predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Materials and Methods: We identified 3657 patients diagnosed with MCI together with their progress notes from Northwestern Medicine Enterprise Data Warehouse (NMEDW) between 2000-2020. The progress notes no later than the first MCI diagnosis were used for the prediction. We first preprocessed the notes by deidentification, cleaning and splitting, and then pretrained a BERT model for AD (AD-BERT) based on the publicly available Bio+Clinical BERT on the preprocessed notes. The embeddings of all the sections of a patient's notes processed by AD-BERT were combined by MaxPooling to compute the probability of MCI-to-AD progression. For replication, we conducted a similar set of experiments on 2563 MCI patients identified at Weill Cornell Medicine (WCM) during the same timeframe. Results: Compared with the 7 baseline models, the AD-BERT model achieved the best performance on both datasets, with Area Under receiver operating characteristic Curve (AUC) of 0.8170 and F1 score of 0.4178 on NMEDW dataset and AUC of 0.8830 and F1 score of 0.6836 on WCM dataset. Conclusion: We developed a deep learning framework using BERT models which provide an effective solution for prediction of MCI-to-AD progression using clinical note analysis.
- Published
- 2022
- Full Text
- View/download PDF