1. Quantum transport properties of industrial $^{28}$Si/$^{28}$SiO$_2$
- Author
-
Sabbagh, D., Thomas, N., Torres, J., Pillarisetty, R., Amin, P., George, H. C., Singh, K., Budrevich, A., Robinson, M., Merrill, D., Ross, L., Roberts, J., Lampert, L., Massa, L., Amitonov, S., Boter, J., Droulers, G., Eenink, H. G. J., van Hezel, M., Donelson, D., Veldhorst, M., Vandersypen, L. M. K., Clarke, J. S., and Scappucci, G.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences - Abstract
We investigate the structural and quantum transport properties of isotopically enriched $^{28}$Si/$^{28}$SiO$_2$ stacks deposited on 300 mm Si wafers in an industrial CMOS fab. Highly uniform films are obtained with an isotopic purity greater than 99.92\%. Hall-bar transistors with an equivalent oxide thickness of 17 nm are fabricated in an academic cleanroom. A critical density for conduction of $1.75\times10^{11}$ cm$^{-2}$ and a peak mobility of 9800 cm$^2$/Vs are measured at a temperature of 1.7 K. The $^{28}$Si/$^{28}$SiO$_2$ interface is characterized by a roughness of $\Delta=0.4$ nm and a correlation length of $\Lambda=3.4$ nm. An upper bound for valley splitting energy of 480 $\mu$eV is estimated at an effective electric field of 9.5 MV/m. These results support the use of wafer-scale $^{28}$Si/$^{28}$SiO$_2$ as a promising material platform to manufacture industrial spin qubits., Comment: 5 pages, 3 figures
- Published
- 2018
- Full Text
- View/download PDF