1. Nonparametric estimation of trend function for stochastic differential equations driven by a bifractional Brownian motion
- Author
-
Abdelmalik Keddi, Fethi Madani, and Amina Angelika Bouchentouf
- Subjects
Estimation ,kernel estimator ,General Mathematics ,010102 general mathematics ,Nonparametric statistics ,nonparametric estimation ,01 natural sciences ,Trend function ,stochastic differential equations ,62m09 ,010104 statistics & probability ,Stochastic differential equation ,trend function ,60g15 ,QA1-939 ,Applied mathematics ,bifractional brownian motion ,0101 mathematics ,Mathematics ,Brownian motion - Abstract
The main objective of this paper is to investigate the problem of estimating the trend function St = S(xt) for process satisfying stochastic differential equations of the type dX t = S ( X t ) dt + ε dB t H , K , X 0 = x 0 , 0 ≤ t ≤ T , {\rm{d}}{{\rm{X}}_{\rm{t}}} = {\rm{S}}\left( {{{\rm{X}}_{\rm{t}}}} \right){\rm{dt + }}\varepsilon {\rm{dB}}_{\rm{t}}^{{\rm{H,K}}},\,{{\rm{X}}_{\rm{0}}} = {{\rm{x}}_{\rm{0}}},\,0 \le {\rm{t}} \le {\rm{T,}} where { B t H , K , t ≥ 0 {\rm{B}}_{\rm{t}}^{{\rm{H,K}}},{\rm{t}} \ge {\rm{0}} } is a bifractional Brownian motion with known parameters H ∈ (0, 1), K ∈ (0, 1] and HK ∈ (1/2, 1). We estimate the unknown function S(xt) by a kernel estimator ̂St and obtain the asymptotic properties as ε → 0. Finally, a numerical example is provided.
- Published
- 2020
- Full Text
- View/download PDF