1. Self-assembly of Aeropyrum pernix bacilliform virus 1 (APBV1) major capsid protein and its application as building blocks for nanomaterials
- Author
-
Yuka Sumikama, Atsushi Takashima, Tomohiro Mochizuki, Haruhiko Sakuraba, Toshihisa Ohshima, Shinji Sugihara, Shin-ichiro Suye, and Takenori Satomura
- Subjects
Escherichia coli ,Molecular Medicine ,Capsid Proteins ,General Medicine ,Aeropyrum ,Microbiology ,Archaea ,Recombinant Proteins ,Nanostructures - Abstract
Virus capsid proteins have various applications in diverse fields such as biotechnology, electronics, and medicine. In this study, the major capsid protein of bacilliform clavavitus APBV1, which infects the hyperthermophilic archaeon Aeropyrum pernix, was successfully expressed in Escherichia coli. The gene product was expressed as a histidine-tagged protein in E. coli and purified to homogeneity using single-step nickel affinity chromatography. The purified recombinant protein self-assembled to form bacilliform virus-like particles at room temperature. The particles exhibited tolerance against high concentrations of organic solvents and protein denaturants. In addition, we succeeded in fabricating functional nanoparticles with amine functional groups on the surface of ORF6-81 nanoparticles. These robust protein nanoparticles can potentially be used as a scaffold in nanotechnological applications.
- Published
- 2022