Marie-Hélène Balesdent, Karine Blondeau, E. Zelie, Thierry Rouxel, Jérôme Gracy, Noureddine Lazar, Françoise Blaise, Alexander Idnurm, I. Li de la Sierra-Gallay, H. van Tilbeurgh, Carl H. Mesarich, Isabelle Fudal, N. Talbi, Bénédicte Ollivier, Y. Petit-Houdenot, Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand, BIOlogie et GEstion des Risques en agriculture (BIOGER), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Biochimie Structurale [Montpellier] (CBS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), The University of Melbourne, Melbourne, Australia., Grains R&D Corp UM00050, ANR-17-EURE-0007,SPS-GSR,Ecole Universitaire de Recherche de Sciences des Plantes de Paris-Saclay(2017), ANR-14-CE19-0019,StructuraLEP,Caractérisation structurale et fonctionnelle d'effecteurs de L. maculans et de leurs interactants(2014), ANR-13-BS07-0007,Ln23,Complexes de lanthanide comme nouveaux chevaux de Troie pour la détermination structurale de protéines(2013), ANR-10-INBS-0005,FRISBI,Infrastructure Française pour la Biologie Structurale Intégrée(2010), Massey University, Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Montpellier Ressources Imagerie, Biocampus, CNRS, INSERM, Universite Montpellier, Montpellier, France, BioCampus (BCM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), University of Melbourne, Bourse « Contrat Jeune Scientifique » de l’INRAE, and Université ParisSaclay
Recognition of a pathogen avirulence (AVR) effector protein by a cognate plant resistance (R) protein triggers a set of immune responses that render the plant resistant. Pathogens can escape this so-called Effector-Triggered Immunity (ETI) by different mechanisms including the deletion or loss-of-function mutation of the AVR gene, the incorporation of point mutations that allow recognition to be evaded while maintaining virulence function, and the acquisition of new effectors that suppress AVR recognition. The Dothideomycete Leptosphaeria maculans, causal agent of oilseed rape stem canker, is one of the few fungal pathogens where suppression of ETI by an AVR effector has been demonstrated. Indeed, AvrLm4-7 suppresses Rlm3- and Rlm9- mediated resistance triggered by AvrLm3 and AvrLm5-9, respectively. The presence of AvrLm4-7 does not impede AvrLm3 and AvrLm5-9 expression, and the three AVR proteins do not appear to physically interact. To decipher the epistatic interaction between these L. maculans AVR effectors, we determined the crystal structure of AvrLm5-9 and obtained a 3D model of AvrLm3, based on the crystal structure of Ecp11-1, a homologous AVR effector candidate from Fulvia fulva. Despite a lack of sequence similarity, AvrLm5-9 and AvrLm3 are structural analogues of AvrLm4-7 (structure previously characterized). Structure-informed sequence database searches identified a larger number of putative structural analogues among L. maculans effector candidates, including the AVR effector AvrLmS-Lep2, all produced during the early stages of oilseed rape infection, as well as among effector candidates from other phytopathogenic fungi. These structural analogues are named LARS (for Leptosphaeria AviRulence and Suppressing) effectors. Remarkably, transformants of L. maculans expressing one of these structural analogues, Ecp11-1, triggered oilseed rape immunity in several genotypes carrying Rlm3. Furthermore, this resistance could be suppressed by AvrLm4-7. These results suggest that Ecp11-1 shares a common activity with AvrLm3 within the host plant which is detected by Rlm3, or that the Ecp11-1 structure is sufficiently close to that of AvrLm3 to be recognized by Rlm3.Author summaryAn efficient strategy to control fungal diseases in the field is genetic control using resistant crop cultivars. Crop resistance mainly relies on gene-for-gene relationships between plant resistance (R) genes and pathogen avirulence (AVR) genes, as defined by Flor in the 1940s. However, such gene-for-gene relationships can increase in complexity over the course of plant-pathogen co-evolution. Resistance against the plant-pathogenic fungus Leptosphaeria maculans by Brassica napus and other Brassica species relies on the recognition of effector (AVR) proteins by R proteins; however, L. maculans produces an effector that suppresses a subset of these specific resistances. Using a protein structure approach, we revealed structural analogy between several of the resistance-triggering effectors, the resistance-suppressing effector, and effectors from other plant-pathogenic species in the Dothideomycetes and Sordariomycetes classes, defining a new family of effectors called LARS. Notably, cross-species expression of one LARS effector from Fulvia fulva, a pathogen of tomato, in L. maculans resulted in recognition by several resistant cultivars of oilseed rape. These results highlight the need to integrate knowledge on effector structures to improve resistance management and to develop broad-spectrum resistances for multi-pathogen control of diseases.