132 results on '"Stijn, Buitink"'
Search Results
2. The propagation and 3D VHF polarization properties of recoil leaders
- Author
-
Brian Hare, Olaf Scholten, Stijn Buitink, Joseph Dwyer, Ningyu Liu, Chris Sterpka, and Sander ter Veen
- Abstract
Lightning dart and recoil leaders are difficult to understand, as they have a different (often smoother) propagation mode than stepped leaders, and re-ionize a previously ionized channel. In order to understand them better, we have imaged recoil leaders with the LOFAR radio telescope (30-80 MHz), and will present 3D polarization, speed, and intensity data from multiple recoil leaders. We will show that many recoil leaders with high VHF intensity have VHF polarization that is very parallel to the recoil leader channel, with an opening angle as small as 15 degrees. Recoil leaders with lower VHF intensity have larger polarization opening angles, but it is not clear if this is physical or instrumental. In addition, VHF emission from recoil leaders comes from a sub-meter thin channel. Finally, we will show that the propagation speed and VHF intensity are strongly correlated; almost following a power-law or exponential relationship. These results probe the streamer behavior of recoil leaders, and thus provide significant clues to how recoil and dart leaders propagate. The fact that recoil leaders are very VHF thin is consistent with small polarization opening angles, and demonstrates that recoil leaders have significant streamer activity in their core and their corona sheath is VHF silent. The power-law/exponential relationship between speed and VHF intensity, however, is very difficult to explain.
- Published
- 2023
- Full Text
- View/download PDF
3. The NuMoon experiment: Lunar detection of cosmic rays utrinos with LOFAR
- Author
-
G. K. Krampah, Godwin K. Krampah, Brian Hare, Stijn Buitink, Sander ter Veen, Arthur Corstanje, Jörg P. Rachen, Olaf Scholten, Jörg R. Hörandel, T. N. G. Trinh, A. Nelles, Satyendra Thoudam, Pragati Mitra, Kathrine Mulrey, Tim Huege, Tobias Winchen, Hershel Pandya, and Heino Falcke
- Subjects
Physics ,Astronomy ,Cosmic ray ,LOFAR ,Neutrino - Abstract
Contains fulltext : 236332.pdf (Publisher’s version ) (Open Access)
- Published
- 2022
4. Probing hadronic interactions using the latest data measured by the Pierre Auger Observatory
- Author
-
Caterina Trimarelli, Pedro Abreu, Marco Aglietta, Ingomar Allekotte, Kévin Almeida Cheminant, Alejandro Almela, Jaime Alvarez-Muniz, Juan Ammerman Yebra, Gioacchino Alex Anastasi, Luis A. Anchordoqui, Belén Andrada, Sofia Andringa, Carla Aramo, Paulo Ricardo Araújo Ferreira, Enrico Arnone, Juan Carlos Arteaga Velazquez, Hernán Gonzalo Asorey, Pedro Assis, Gualberto Avila, Emanuele Avocone, Alina Mihaela Badescu, Alena Bakalova, Alexandru Balaceanu, Felicia Barbato, Jose A. Bellido, Corinne Berat, Mario Edoardo Bertaina, Gopal Bhatta, Peter L. Biermann, Virginia Binet, Kathrin Bismark, Teresa Bister, Jonathan Biteau, Jiri Blazek, Carla Bleve, Johannes Blümer, Martina Bohacova, Denise Boncioli, Carla Bonifazi, Luan Bonneau Arbeletche, Nataliia Borodai, Jeffrey Brack, Thomas Bretz, P. Gabriel Brichetto Orchera, Florian Lukas Briechle, Peter Buchholz, Antonio Bueno, Stijn Buitink, Mario Buscemi, Max Büsken, Anthony Bwembya, Karen S. Caballero-Mora, Lorenzo Caccianiga, Ioana Caracas, Rossella Caruso, Antonella Castellina, Fernando Catalani, Gabriella Cataldi, Lorenzo Cazon, Marcos Cerda, Jose Augusto Chinellato, Jiří Chudoba, Ladislav Chytka, Roger W Clay, Agustín Cobos Cerutti, Roberta Colalillo, Alan Coleman, Maria Rita Coluccia, Rúben Conceição, Antonio Condorelli, Giovanni Consolati, Fernando Contreras, Fabio Convenga, Diego Correia dos Santos, Corbin Covault, Markus Cristinziani, Sergio Dasso, Kai Daumiller, Bruce R. Dawson, Jarryd A. Day, Rogerio M. de Almeida, Joaquin de Jesus, Sijbrand J. de Jong, João de Mello Neto, Ivan De Mitri, Jaime de Oliveira, Danelise de Oliveira Franco, Francesco de Palma, Vitor de Souza, Emanuele De Vito, Antonino Del Popolo, Olivier Deligny, Luca Deval, Armando di Matteo, Madalina Dobre, Carola Dobrigkeit, Juan Carlos D'Olivo, Luis Miguel Domingues Mendes, Rita Cassia dos Anjos, Maria Teresa Dova, Jan Ebr, Mohamed Eman, Ralph Engel, Italo Epicoco, Martin Erdmann, Carlos O. Escobar, Alberto Etchegoyen, Heino Falcke, John Farmer, Glennys R. Farrar, Anderson Campos Fauth, Norberto Fazzini, Fridtjof Feldbusch, Francesco Fenu, Brian Fick, Juan Manuel Figueira, Andrej Filipcic, Thomas Fitoussi, Tomáš Fodran, Toshihiro Fujii, Alan Fuster, Cristina Galea, Claudio Galelli, Beatriz García, Hartmut Gemmeke, Flavia Gesualdi, Alexandru Gherghel-Lascu, Piera Luisa Ghia, Ugo GIACCARI, Marco Giammarchi, Jonas Glombitza, Fabian Gobbi, Fernando Gollan, Geraldina Golup, Mariano Gómez Berisso, Primo F. Gómez Vitale, Juan Pablo Gongora, Juan Manuel González, Nicolas Martin Gonzalez, Isabel Goos, Dariusz Gora, Alessio Gorgi, Marvin Gottowik, Trent D. Grubb, Fausto Guarino, Germano Guedes, Eleonora Guido, Steffen Traugott Hahn, Petr Hamal, Matías Rolf Hampel, Patricia María Hansen, Diego Harari, Violet M. Harvey, Andreas Haungs, Thomas Hebbeker, Dieter Heck, Carlos Hojvat, Jörg R. Hörandel, Pavel Horvath, Miroslav Hrabovsky, Tim Huege, Antonio Insolia, Paula Gina Isar, Petr Janecek, Jeffrey A. Johnsen, Jakub Jurysek, Alex Kääpä, Karl-Heinz Kampert, Bianca Keilhauer, Abha Khakurdikar, Varada Varma Kizakke Covilakam, Hans Klages, Matthias Kleifges, Jonny Kleinfeller, Felix Knapp, Norbert Kunka, Bruno L. Lago, Niklas Langner, Marcelo Augusto Leigui de Oliveira, Vladimir Lenok, Antoine Letessier-Selvon, Isabelle Lhenry-Yvon, Domenico Lo Presti, Luis LOPES, Rebeca López, Lu Lu, Quentin Luce, Jon Paul Lundquist, Allan Machado Payeras, Giovanni Mancarella, Dusan Mandat, Bradley C. Manning, Julien Manshanden, Paul Mantsch, Sullivan Marafico, Federico Maria Mariani, Analisa Mariazzi, Ioana Maris, Giovanni Marsella, Daniele Martello, Sara Martinelli, Oscar Martínez Bravo, Miguel Alexandre Martins, Massimo Mastrodicasa, Hermann-Josef Mathes, James Matthews, Giorgio Matthiae, Eric William Mayotte, Sonja Mayotte, Peter Mazur, Gustavo Medina-Tanco, Diego Melo, Alexander Menshikov, Stanislav Michal, Maria Isabel Micheletti, Lino Miramonti, Silvia Mollerach, François Montanet, Leonel Morejon, Carlo Morello, Ana L. Müller, Katharine Mulrey, Roberto Mussa, Marco Stein Muzio, Wilson M. Namasaka, Alina Nasr-Esfahani, Lukas Nellen, Gabriela Nicora, Mihai Niculescu-Oglinzanu, Marcus Niechciol, Dave Nitz, Ian Norwood, Dalibor Nosek, Vladimír Novotný, Libor Nozka, Achille Nucita, Luis A. Nunez, Cainã Oliveira, Miroslav Palatka, Juan Pallotta, Gonzalo Parente, Alejandra Parra, Jannis Pawlowsky, Miroslav Pech, Jan Pękala, Rodrigo Pelayo, Edyvania Emily Pereira Martins, Johnnier Perez Armand, Carmina Pérez Bertolli, Lorenzo Perrone, Sergio Petrera, Camilla Petrucci, Tanguy Pierog, Mário Pimenta, Manuel Platino, Bjarni Pont, Mart Pothast, Paolo Privitera, Michael Prouza, Andrew Puyleart, Sven Querchfeld, Julian Rautenberg, Diego Ravignani, Maximilian Reininghaus, Jan Ridky, Felix Riehn, Markus Risse, Vincenzo Rizi, Washington Rodrigues de Carvalho, Jorge Rubén Rodriguez Rojo, Matías J. Roncoroni, Simone Rossoni, Markus Roth, Esteban Roulet, Adrian Rovero, Philip Ruehl, Alexandra Saftoiu, Mohit Saharan, Francesco Salamida, Humberto Ibarguen Salazar, Gaetano Salina, Jose Sanabria Gomez, Federico Andrés Sánchez, Edivaldo Moura Santos, Eva Santos, Fred Sarazin, Raul Sarmento, Ricardo Sato, Pierpaolo Savina, Christoph M. Schäfer, Viviana Scherini, Harald Schieler, Martin Schimassek, Michael Schimp, Felix Schlüter, David Schmidt, Olaf Scholten, Harm Schoorlemmer, Petr Schovanek, Frank G. Schröder, Josina Schulte, Tobias Schulz, Sergio J Sciutto, Marina Scornavacche, Alberto Segreto, Srijan Sehgal, Shima Ujjani Shivashankara, Guenter Sigl, Gaia Silli, Octavian Sima, Raluca Smau, Radomir Smida, Paul Sommers, Jorge F. Soriano, Ruben Squartini, Maximilian Stadelmaier, Denis Stanca, Samo Stanič, Jaroslaw Stasielak, Patrick Stassi, Maximilian Straub, Alexander Streich, Mauricio Suárez-Durán, Tristan Sudholz, Tiina Suomijarvi, A. Daniel Supanitsky, Zbigniew Szadkowski, Alex Tapia, Carla Taricco, Charles Timmermans, Olena Tkachenko, Petr Tobiska, Carlos J. Todero Peixoto, Bernardo Tomé, Zoé Torrès, Andres Travaini, Petr Travnicek, Matias Jorge Tueros, Ralf Ulrich, Michael Unger, Lukáš Vaclavek, Martin Vacula, Jose F. Valdés Galicia, Laura Valore, Enrique Varela, Adriana Vásquez-Ramírez, Darko Veberic, Cynthia Ventura, Indira D. Vergara Quispe, Valerio Verzi, Jakub Vicha, Jacco Vink, Serguei Vorobiov, Hernan Wahlberg, Clara Keiko Oliveira Watanabe, Alan Watson, Andreas Weindl, Lawrence Wiencke, Henryk Wilczyński, David Wittkowski, Brian Wundheiler, Alexey Yushkov, Orazio Zapparrata, Enrique Zas, Danilo Zavrtanik, Marko Zavrtanik, and Lukas Zehrer
- Published
- 2022
- Full Text
- View/download PDF
5. The 3D Polarization of Recoil Leaders
- Author
-
Brian Hare, Olaf Scholten, Joseph Dwyer, Ningyu Liu, Chris Strepka, Stijn Buitink, and Sander ter Veen
- Abstract
We have recently developed a new 3D beamforming algorithm, using data from the LOw Frequency ARray (LOFAR) radio telescope (in the 30-80 MHz band), that is capable of resolving even the most complex lightning phenomena with meter and nanosecond scale accuracy. Because it operates in full 3D, this algorithm inherently extracts and accounts for the 3D polarization of the VHF sources. Here we demonstrate the full power of this technique by extracting the full 3D polarization of multiple sections of recoil leaders. We confirm previous work that showed that recoil leaders have significant polarization perpendicular to the lightning channel, likely due to charge flow between the lightning channel core and corona sheath. However, we also show that recoil leaders can also have significant polarization parallel to the channel as well. In addition, we show that the ratio of parallel-to-perpendicular polarization is strongly correlated with faster and more intensely emitting recoil leaders. We will argue that this could be due to faster recoils causing the electric field parallel to the channel to change more rapidly, and if the electric field changes rapidly enough than the recoil leader can create streamers parallel to the lightning channel which are much more strongly emitting than streamers perpendicular to the lightning channel.
- Published
- 2022
- Full Text
- View/download PDF
6. A range of different negative leader propagation modes as imaged with LOFAR
- Author
-
Olaf Scholten, Brian Hare, Joe Dwyer, Ningyu Liu, Chris Sterpka, Stijn Buitink, and Sander ter Veen
- Abstract
We have developed a time-resolved interferometric imaging in 3D (TRI-D) method for LOFAR data where the signals of 400 individual antennas are added coherently. This allows us to reach an even better resolution in 3D than with our original impulsive imager (based on a time-of-arrival-difference method and reaching a meter scale resolution) and still have a time resolution close to the impulse-response time of our system (25 ns).After a short outline of the TRI-D technique we show that with this new imaging technique we can resolve the fine dynamics in the different negative leader propagations modes, varying from normal negative leaders with a stepping distance of the order of a few tens of meters to negative leaders at altitudes above 7 km that propagate with steps of a few hundred meter to Intensely Radiating Negative Leaders that propagate as a broad front with an area of up to km^2 over distances of a few kilometers.
- Published
- 2022
- Full Text
- View/download PDF
7. Results on mass composition of cosmic rays as measured with LOFAR
- Author
-
Stijn Buitink, Katie Mulrey, Tobias Winchen, Arthur Corstanje, Heino Falcke, Anna Nelles, H. Pandya, Gia Trinh, Jörg P. Rachen, Jörg R. Hörandel, Olaf Scholten, G. K. Krampah, Pragati Mitra, Brian Hare, Tim Huege, Sander ter Veen, and Satyendra Thoudam
- Subjects
Physics ,Particle physics ,Astronomy ,Cosmic ray ,LOFAR ,Mass composition ,Standard deviation ,law.invention ,Telescope ,Distribution (mathematics) ,law ,Range (statistics) ,ddc:530 ,Energy (signal processing) - Abstract
We present an updated analysis of the mass composition of cosmic rays in the energy range of $10^{16.8}$ to $10^{18.3}$ eV. It is based on measurements with the LOFAR telescope of the depth of shower maximum, $X_{\rm max}$. We review the improvements to the simulation-based reconstruction setup, as well as the selection method to obtain a minimally biased $X_{\rm max}$ dataset. Results include estimates of the mean and standard deviation of the $X_{\rm max}$ distribution. A statistical analysis at distribution level has been done as well, using a four-component model of light to heavy nuclei. It confirms our previous results showing a significant low-mass fraction in this energy range. The radio technique has advanced enough that multiple observatories are publishing results on $X_{\rm max}$. As the array layouts and methods vary, it is interesting to compare the approaches, in light of the observed differences in the $X_{\rm max}$ results. We therefore show additional information on bias tests used in the $X_{\rm max}$ reconstruction and sample selection process.
- Published
- 2022
- Full Text
- View/download PDF
8. Performance of SKA as an air shower observatory
- Author
-
Katharine Mulrey, Anna Nelles, Heino Falcke, Brian Hare, H. Pandya, Sander ter Veen, C. W. James, Satyendra Thoudam, Gia Trinh, Tim Huege, Pragati Mitra, Stijn Buitink, G. K. Krampah, Arthur Corstanje, Jörg P. Rachen, Jörg R. Hörandel, Tobias Winchen, and Olaf Scholten
- Subjects
Physics ,Antenna array ,Range (particle radiation) ,Air shower ,Duty cycle ,Observatory ,Astronomy ,Detector ,ddc:530 ,LOFAR ,Energy (signal processing) - Abstract
The low frequency segment of SKA in Australia will have an extremely dense antenna array spanning an area of roughly 0.5 km$^2$. It offers unique possibilities for high‐resolution observations of air showers. Compared to LOFAR, it will have a much more homogeneous ground coverage, an increased frequency bandwidth (50-350 MHz), and the possibility to continuously observe with nearly 100% duty cycle. SKA will observe air showers in the range 10$^{16}$ eV - 10$^{18}$ eV with a reconstruction resolution on \xmax\ of around 10 g/cm$^2$. This allows for a high‐precision study of mass composition in the energy regime where a transition is expected from Galactic to extragalactic origin. In addition, SKA will be able to put constraints on hadronic interaction models, which is crucial for interpreting the data in this complex energy range. In this talk, we will show the results of a full detector simulation and demonstrate the capabilities of SKA, including energy and Xmax reconstruction, as well as more advanced methods to constrain the shape of the longitudinal development of air showers.
- Published
- 2022
9. The Spontaneous Nature of Lightning Initiation Revealed
- Author
-
Olaf Scholten, Joseph R. Dwyer, A. Nelles, Ningyu Liu, C. Sterpka, Brian Hare, S. ter Veen, Stijn Buitink, Astronomy, and Physics
- Subjects
Physics ,Beamforming ,business.industry ,Astronomy ,lightning initiation ,LOFAR ,Low frequency ,interferometry ,Lightning ,Interferometry ,Flash (photography) ,Geophysics ,Optics ,ddc:550 ,General Earth and Planetary Sciences ,Radio interferometer ,business ,streamers - Abstract
Geophysical research letters 48(23), GL095511 (2021). doi:10.1029/2021GL095511, Here, we present new radio interferometer beamforming observations of lightning initiation using data from the Low-Frequency Array (LOFAR). We show that the first lightning source in the flash increases exponentially in intensity by two orders of magnitude in 15 ��s, while propagating 88 m away from the initiation location at a constant speed of 4.8 �� 0.1 �� 10$^6$ m/s. A second source replaces the first source at the initiation location, and subsequent propagation of the lightning leader follows. We interpret the first source to be a rapidly propagating and intensifying positive streamer discharge that subsequently produces a hot leader channel near the initiation point. How lightning initiates is one of the greatest unsolved problems in the atmospheric sciences, and these results shed light on this longstanding mystery., Published by Wiley, Hoboken, NJ
- Published
- 2021
- Full Text
- View/download PDF
10. The Radio Neutrino Observatory Greenland (RNO-G)
- Author
-
Zachary S. Meyers, Allan Hallgren, Katie Carter, Anna Nelles, Thomas Meures, Ryan Krebs, Lilly Pyras, Krijn D. de Vries, N. Bingefors, John L. Kelley, Patrick Allison, U. Latif, Benjamin Hokanson-Fasig, Juan A. Aguilar, Dieder J. Van Den Broeck, Simon De Kockere, R. Lahmann, Ilse Plaisier, Stephanie Wissel, David Zeke Besson, Jorge Torres, M. A. DuVernois, Mitchell Magnuson, Simona Toscano, Kaeli Hughes, D. Tosi, Christian Glaser, Maddalena Cataldo, Bob Oeyen, Dirk Ryckbosch, Robert Young, Rno-g, Steffen Hallmann, Cosmin Deaconu, Zachary Curtis-Ginsberg, Daniel Southall, J. J. Beatty, Daniel Smith, Hans Bernhoff, C. Hornhuber, Katharine Mulrey, Paramita Dasgupta, Olga Botner, Sjoerd Bouma, Olaf Scholten, D. Seckel, Brian Clark, Alexander Novikov, Amy Connolly, Christoph Welling, Spencer Klein, Hershal Pandya, Stijn Buitink, Bryan Hendricks, Nick van Eijndhoven, Eric Oberla, A. Karle, Abigail G. Vieregg, Adrian Zink, and Jordan C. Hanson
- Subjects
Neutrino detector ,Sky ,Software deployment ,Observatory ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Environmental science ,Astronomy ,Instrumentation (computer programming) ,Neutrino ,media_common - Abstract
The Radio Neutrino Observatory Greenland (RNO-G) is scheduled for deployment in the summerof 2021. It will target the detection of astrophysical and cosmogenic neutrinos above 10 PeV. With 35 autonomous stations, it will be the largest implementation of a radio neutrino detector to date.The stations combine best-practice instrumentation from all previous radio neutrino arrays, such as a deep phased-array trigger and surface antennas. These proceedings describe the experimentalconsiderations that have driven the design of RNO-G and the current progress in deployment, aswell as discuss the projected sensitivity of the instrument. RNO-G will provide a unique view ofthe Northern Sky and will also inform the design of the radio component of IceCube-Gen2.
- Published
- 2021
- Full Text
- View/download PDF
11. The relationship of lightning radio pulse amplitudes and source altitudes as observed by LOFAR
- Author
-
A. Nelles, Arthur Corstanje, Heino Falcke, Brian Hare, Stijn Buitink, Katie Mulrey, H. Pandya, J. G. O. Machado, T. Huege, Olaf Scholten, Satyendra Thoudam, G. K. Krampah, Pragati Mitra, S. ter Veen, Tobias Winchen, T. N. G. Trinh, Jörg P. Rachen, Jörg R. Hörandel, Astronomy, Astronomy and Astrophysics Research Group, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Environmental Science (miscellaneous) ,radio astronomy ,Atmosphere ,Flash (photography) ,Altitude ,ddc:550 ,ddc:530 ,Physics::Atmospheric and Oceanic Physics ,amplitude ,Physics ,pulse detection ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Lightning ,Pulse (physics) ,Amplitude ,Physics::Space Physics ,General Earth and Planetary Sciences ,lightning ,Radio astronomy ,altitude - Abstract
Earth and Space Science 9(4), e2021EA001958 (2022). doi:10.1029/2021EA001958, When a lightning flash is propagating in the atmosphere it is known that especially the negative leaders emit a large number of very high frequency (VHF) radio pulses. It is thought that this is due to streamer activity at the tip of the growing negative leader. In this work, we have investigated the dependence of the strength of this VHF emission on the altitude of such emission for two lightning flashes as observed by the Low Frequency ARray (LOFAR) radio telescope. We find for these two flashes that the extracted amplitude distributions are consistent with a power-law, and that the amplitude of the radio emissions decreases very strongly with source altitude, by more than a factor of 2 from 1 km altitude up to 5 km altitude. In addition, we do not find any dependence on the extracted power-law with altitude, and that the extracted power-law slope has an average around 3, for both flashes., Published by American Geophysical Union, Malden, Mass.
- Published
- 2021
- Full Text
- View/download PDF
12. Distinguishing features of high altitude negative leaders as observed with LOFAR
- Author
-
Joseph R. Dwyer, G. K. Krampah, C. Sterpka, A. Nelles, Arthur Corstanje, Heino Falcke, Stijn Buitink, Katie Mulrey, S. ter Veen, Ningyu Liu, H. Pandya, T. N. G. Trinh, Jörg P. Rachen, Jörg R. Hörandel, Tobias Winchen, Pragati Mitra, Satyendra Thoudam, Brian Hare, T. Huege, Olaf Scholten, Physics, Faculty of Sciences and Bioengineering Sciences, and Astronomy
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Astronomy ,Physics ,High resolution ,LOFAR ,010501 environmental sciences ,Effects of high altitude on humans ,01 natural sciences ,Thunderstorms ,Lightning ,Negative leaders ,Radio telescope ,Altitude ,Corona flash ,ddc:530 ,Radio emission ,LOFAR lightning imaging ,Geology ,0105 earth and related environmental sciences - Abstract
Atmospheric research 260, 105688 (2021). doi:10.1016/j.atmosres.2021.105688, We present high resolution observations of negative leaders at high altitude using the LOFAR radio telescope. We show that the structure of negative leaders at high altitude (altitudes larger than 7 km) differs in several respects from that of negative leaders at lower altitudes. In particular, the High Altitude Negative Leaders (HANLs) show very distinct steps of a few hundred meters, stepping times of the order of a few milliseconds and a filamentary structure that extends outward over several hundreds of meters; as opposed to lower altitude (��� 5 km) leaders, which have stepping times and distances around 0.01 ms and 10 m. Similar to lower altitude leaders, high altitude leaders emit copious VHF radiation from their propagating tip and have propagation velocities of the order of 10$^5$ m/s. Corona-flash like bursts can be distinguished when zooming in to meter and nanosecond scales., Published by Elsevier, Amsterdam [u.a.]
- Published
- 2021
- Full Text
- View/download PDF
13. Time resolved 3D interferometric imaging of a section of a negative leader with LOFAR
- Author
-
Brian Hare, S. ter Veen, Ningyu Liu, C. Sterpka, Joseph R. Dwyer, Stijn Buitink, T. Huege, Olaf Scholten, A. Nelles, Astronomy, and Physics
- Subjects
Beamforming ,010504 meteorology & atmospheric sciences ,Astronomy ,FOS: Physical sciences ,physics.ao-ph ,Low frequency ,01 natural sciences ,Optics ,0103 physical sciences ,ddc:530 ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,business.industry ,LOFAR ,Lightning ,Corona ,Interferometry ,Physics - Atmospheric and Oceanic Physics ,Orders of magnitude (time) ,Atmospheric and Oceanic Physics (physics.ao-ph) ,Thunderstorm ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM - Abstract
Physical review / D 104(6), 063022 (2021). doi:10.1103/PhysRevD.104.063022, We have developed a three dimensional interferometric beamforming technique for imaging lightning flashes using very-high frequency (VHF) radio data recorded from several hundred antennas with baselines up to 100 km as offered by the Low Frequency Array. The long baselines allow us to distinguish fine structures on the scale of meters, while the large number of antennas allow us to observe processes that radiate at the same intensity as the background when using a time resolution that is close to the impulse-response time of the system, 100 ns. The new beamforming imaging technique is complementary to our existing impulsive imaging technique. We apply this new tool to the imaging of four stepped negative leaders in two flashes. For one flash, we observe the dynamics of corona bursts that are emitted in the stepping process. Additionally, we show that the intensity emitted in VHF during the stepping process follows a power law over 4 orders of magnitude in intensity for four leaders in two different lightning storms., Published by Inst., Melville, NY
- Published
- 2021
- Full Text
- View/download PDF
14. Timing Calibration and Windowing Technique Comparison for Lightning Mapping Arrays
- Author
-
Brian Hare, Paul R. Krehbiel, S. ter Veen, T. N. G. Trinh, Harald E. Edens, Satyendra Thoudam, Jörg P. Rachen, Jörg R. Hörandel, Anna Nelles, Heino Falcke, H. Pandya, Olaf Scholten, Pragati Mitra, Arthur Corstanje, W. Rison, Tobias Winchen, Stijn Buitink, Katie Mulrey, G. K. Krampah, Tim Huege, Physics, Faculty of Sciences and Bioengineering Sciences, Astronomy, and Research unit Astroparticle Physics
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy ,Atmospheric Electricity ,QB1-991 ,Environmental Science (miscellaneous) ,010502 geochemistry & geophysics ,01 natural sciences ,Radio telescope ,Set (abstract data type) ,0103 physical sciences ,Limit (music) ,ddc:550 ,Calibration ,Astronomical interferometer ,ddc:530 ,010303 astronomy & astrophysics ,Antenna Arrays ,0105 earth and related environmental sciences ,Remote sensing ,QE1-996.5 ,business.industry ,Physics ,Electromagnetics ,Geology ,LOFAR ,Lightning ,Atmospheric Processes ,Global Positioning System ,General Earth and Planetary Sciences ,business ,Research Article - Abstract
Earth and Space Science 8(7), 2020EA001523 (2021). doi:10.1029/2020EA001523, Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 ��s or 10 ��s fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers., Published by American Geophysical Union, Malden, Mass.
- Published
- 2021
- Full Text
- View/download PDF
15. Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory
- Author
-
A. Segreto, Günter Sigl, Orazio Zapparrata, P. Stassi, Radomir Smida, A. Machado Payeras, G. Cataldi, V. Scherini, Carola Dobrigkeit, M. Muzio, Marcio Aparecido Muller, Srijan Sehgal, Fernando Gollan, Carla Bleve, Rodrigo Guedes Lang, M. E. Bertaina, F. de Palma, Alan Watson, M. Perlin, Mihai Niculescu-Oglinzanu, L. Valore, Belén Andrada, Marina Scornavacche, V. de Souza, G. Golup, Violet M. Harvey, D. Harari, N. Kunka, T. Bister, F. Riehn, P. Tobiska, Jonathan Biteau, M. I. Micheletti, A. Insolia, Jesús Peña-Rodríguez, Matías J. Roncoroni, Sullivan Marafico, M. Kleifges, D. Zavrtanik, Marco Giammarchi, R.J. Barreira Luz, D. Melo, G. P. Guedes, F. Salamida, N. Fazzini, Jonas Glombitza, F. C. T. Barbato, A. Yushkov, Alina Mihaela Badescu, Ioana Codrina Maris, R. Sato, Lourenco Lopes, Toshihiro Fujii, S. Schröder, Italo Epicoco, Marvin Gottowik, Cristina Galea, M. Prouza, Brian Fick, Xavier Bertou, A. Di Matteo, Julian Kemp, Eric Mayotte, D. Nitz, Esteban Roulet, P. Abreu, D. Ravignani, R. M. de Almeida, K. H. Kampert, J. C. Arteaga Velázquez, J. Kleinfeller, A. Zepeda, M. Gómez Berisso, R. C. Shellard, Roberto Mussa, A. Puyleart, Jakub Juryšek, Petr Hamal, Steffen Hahn, Juan Carlos D'Olivo, Julien Manshanden, Lorenzo Caccianiga, Pedro Assis, H. Martinez, A. Etchegoyen, G. C. Hill, Corinne Berat, M. Giller, Jan Pękala, Rúben Conceição, Valerio Verzi, B. Tome, J. Chudoba, L. Lu, H. J. Mathes, Stanislav Michal, B. Wundheiler, Andres Travaini, K. Choi, Alex Kääpä, Ralph Engel, Flavia Gesualdi, J. Perez Armand, E. Varela, D. Correia dos Santos, J. Ridky, L. R. Wiencke, T. Pierog, François Montanet, Justin M. Albury, P. L. Ghia, Marcel Köpke, M. Platino, J.D. Sanabria Gomez, Rodrigo Pelayo, Jose J. Gonzalez, Stijn Buitink, Katie Mulrey, Carlos Escobar, G. De Mauro, Kevin-Druis Merenda, Vladimir Lenok, L. Perrone, H. Schieler, C. J. Todero Peixoto, Mario Buscemi, D. Nosek, E. Santos, Niklas Langner, Antonella Castellina, Eleonora Guido, Antonio Condorelli, M. Risse, Jörg R. Hörandel, J. F. Valdés Galicia, I. De Mitri, Jonathan Blazek, Jose Chinellato, J. Rodriguez Rojo, Fridtjof Feldbusch, A.L. Garcia Vegas, Enrique Zas, I. Lhenry-Yvon, C. Trimarelli, Gaia Silli, A. Filipčič, A.D. Supanitsky, Philipp Papenbreer, Claudio Galelli, A. Weindl, M. Suárez-Durán, J. Stasielak, T. Huege, Hernán Gonzalo Asorey, L. Nellen, L. Anchordoqui, Alena Bakalova, C. Morello, Miroslav Hrabovský, Petr Travnicek, Trent D. Grubb, G. Parente, Fabrizia Canfora, Fernando Contreras, A. Haungs, Juan Manuel Figueira, Roberta Colalillo, Paul Sommers, Clara Keiko Oliveira Watanabe, B. García, M. Schimp, A. G. Mariazzi, R. López, Karen S. Caballero-Mora, H. Wilczyński, Ioana Caracas, A. Letessier-Selvon, Lorenzo Cazon, C. Pérez Bertolli, F. Sanchez, F. Sarazin, S. Petrera, Marc Weber, David Schmidt, G. Farrar, L. Zehrer, J. de Oliveira, Alejandro Almela, P. Mantsch, Z. Szadkowski, M. Schimassek, C. Hojvat, Jan Ebr, Jacco Vink, Peter L. Biermann, L. Bonneau Arbeletche, Maximilian Reininghaus, Paolo Privitera, M. A. Leigui de Oliveira, Jaime Alvarez-Muñiz, Alexandru Gherghel-Lascu, Martin Erdmann, J. de Jesús, A. Taboada, G. Marsella, E. M. Santos, A. Gorgi, H.O. Klages, B. C. Manning, Dariusz Gora, Bjarni Pont, Thomas Bretz, Petr Janecek, Corbin Covault, Matías Rolf Hampel, Frank G. Schröder, R. Squartini, Alfred Müller, P.F. Gómez Vitale, A. Streich, Gioacchino Alex Anastasi, M. Wirtz, David Wittkowski, G. Salina, Roger W Clay, Olivier Deligny, W. M. Namasaka, M. Mastrodicasa, A. C. Rovero, Alexandru Balaceanu, A. A. Nucita, Alan Coleman, Lino Miramonti, S. J. Saffi, Lukáš Vaclavek, J. F. Soriano, D. de Oliveira Franco, R. Alves Batista, Bruce R. Dawson, Octavian Sima, Ana Martina Botti, Jeffrey Brack, Olaf Scholten, P.O. Mazur, K.-H. Becker, Maria Rita Coluccia, Dusan Mandat, Francesco Fenu, Humberto Ibarguen Salazar, M. Pimenta, Tomáš Fodran, Alina Nasr-Esfahani, P.R. Araújo Ferreira, Tobias Winchen, G. Mancarella, B. Keilhauer, Florian Lukas Briechle, Darko Veberič, Ugo Giaccari, S. J. Sciutto, F. Pedreira, Christian Sarmiento-Cano, Raul Sarmento, G. Medina-Tanco, Felix Schlüter, P. Ruehl, Carla Aramo, Vincenzo Rizi, C. J.W.P. Timmermans, Julien Souchard, Jon Paul Lundquist, A. Menshikov, D. Martello, Juan Miguel Carceller, C. M. Schäfer, Markus Roth, Silvia Mollerach, O. Martínez Bravo, Isabel Goos, D. Heck, A. Tapia, Josina Schulte, Peter Hansen, M. del Río, H. Gemmeke, Fabian Gobbi, B. L. Lago, P. Savina, W. Rodrigues de Carvalho, Denise Boncioli, M. Unger, F. Guarino, John Matthews, Peter Buchholz, Marco Aglietta, Miguel Mostafa, E.E. Pereira Martins, Serguei Vorobiov, Martina Bohacova, Miroslav Pech, M. Pothast, J. Hulsman, J. Rautenberg, Pavel Horvath, Q. Luce, Marcus Niechciol, Juan Pablo Gongora, Paula Gina Isar, Sofia Andringa, Maximilian Stadelmaier, Nataliia Borodai, Marcos Cerda, D. Lo Presti, S. J. De Jong, Samo Stanič, Jarryd A. Day, A. Saftoiu, A.C. Cobos Cerutti, Martin Vacula, J. R. T. de Mello Neto, V. Novotny, V. K.C. Varma, Rossella Caruso, A. Lucero, Fernando Catalani, N. González, Kai Daumiller, Heino Falcke, S. Querchfeld, Olena Tkachenko, Thomas Hebbeker, Sergio Dasso, Tristan Sudholz, J. Šupík, Carlo Ventura, Martín Miguel Freire, V. Pirronello, J. Vicha, Ladislav Chytka, A. Aab, Carla Taricco, Matias Tueros, Luis A. Nunez, T. Suomijärvi, J. Pallotta, Hernan Wahlberg, A. Parra, A. Fuster, M. Trini, P.G. Brichetto Orchera, I. Allekotte, A. C. Fauth, Carla Bonifazi, Jose A. Bellido, Fabio Convenga, I.D. Vergara Quispe, M. Zavrtanik, E. De Vito, Giovanni Consolati, Petr Schovanek, Denis Stanca, Ralf Ulrich, L. Nožka, G. Matthiae, Antonio Bueno, Gualberto Avila, John Farmer, Maria-Teresa Dova, R.C. dos Anjos, Adriana Vásquez-Ramírez, M. Palatka, Jeffrey A. Johnsen, Aab, A., Abreu, P., Aglietta, M., Albury, J. M., Allekotte, I., Almela, A., Alvarez-Mu??iz, J., Alves Batista, R., Anastasi, G. A., Anchordoqui, L., Andrada, B., Andringa, S., Aramo, C., Ara??jo Ferreira, P. R., Arteaga Vel??zquez, J. C., Asorey, H., Assis, P., Avila, G., Badescu, A. M., Bakalova, A., Balaceanu, A., Barbato, F., Barreira Luz, R. J., Becker, K. H., Bellido, J. A., Berat, C., Bertaina, M. E., Bertou, X., Biermann, P. L., Bister, T., Biteau, J., Blazek, J., Bleve, C., Boh????ov??, M., Boncioli, D., Bonifazi, C., Bonneau Arbeletche, L., Borodai, N., Botti, A. M., Brack, J., Bretz, T., Brichetto Orchera, P. G., Briechle, F. L., Buchholz, P., Bueno, A., Buitink, S., Buscemi, M., Caballero-Mora, K. S., Caccianiga, L., Canfora, F., Caracas, I., Carceller, J. M., Caruso, R., Castellina, A., Catalani, F., Cataldi, G., Cazon, L., Cerda, M., Chinellato, J. A., Choi, K., Chudoba, J., Chytka, L., Clay, R. W., Cobos Cerutti, A. C., Colalillo, R., Coleman, A., Coluccia, M. R., Concei????o, R., Condorelli, A., Consolati, G., Contreras, F., Convenga, F., Correia dos Santos, D., Covault, C. E., Dasso, S., Daumiller, K., Dawson, B. R., Day, J. A., de Almeida, R. M., de Jes??s, J., de Jong, S. J., De Mauro, G., de Mello Neto, J. R. T., De Mitri, I., de Oliveira, J., de Oliveira Franco, D., de Palma, F., de Souza, V., De Vito, E., del R??o, M., Deligny, O., Di Matteo, A., Dobrigkeit, C., D'Olivo, J. C., dos Anjos, R. C., Dova, M. T., Ebr, J., Engel, R., Epicoco, I., Erdmann, M., Escobar, C. O., Etchegoyen, A., Falcke, H., Farmer, J., Farrar, G., Fauth, A. C., Fazzini, N., Feldbusch, F., Fenu, F., Fick, B., Figueira, J. M., Filip??i??, A., Fodran, T., Freire, M. M., Fujii, T., Fuster, A., Galea, C., Galelli, C., Garc??a, B., Garcia Vegas, A. L., Gemmeke, H., Gesualdi, F., Gherghel-Lascu, A., Ghia, P. L., Giaccari, U., Giammarchi, M., Giller, M., Glombitza, J., Gobbi, F., Gollan, F., Golup, G., G??mez Berisso, M., G??mez Vitale, P. F., Gongora, J. P., Gonz??lez, J. M., Gonz??lez, N., Goos, I., G??ra, D., Gorgi, A., Gottowik, M., Grubb, T. D., Guarino, F., Guedes, G. P., Guido, E., Hahn, S., Hamal, P., Hampel, M. R., Hansen, P., Harari, D., Harvey, V. M., Haungs, A., Hebbeker, T., Heck, D., Hill, G. C., Hojvat, C., H??randel, J. R., Horvath, P., Hrabovsk??, M., Huege, T., Hulsman, J., Insolia, A., Isar, P. G., Janecek, P., Johnsen, J. A., Jurysek, J., K????p??, A., Kampert, K. H., Keilhauer, B., Kemp, J., Klages, H. O., Kleifges, M., Kleinfeller, J., K??pke, M., Kunka, N., Lago, B. L., Lang, R. G., Langner, N., Leigui de Oliveira, M. A., Lenok, V., Letessier-Selvon, A., Lhenry-Yvon, I., Lo Presti, D., Lopes, L., L??pez, R., Lu, L., Luce, Q., Lucero, A., Lundquist, J. P., Machado Payeras, A., Mancarella, G., Mandat, D., Manning, B. C., Manshanden, J., Mantsch, P., Marafico, S., Mariazzi, A. G., Mari??, I. C., Marsella, G., Martello, D., Martinez, H., Mart??nez Bravo, O., Mastrodicasa, M., Mathes, H. J., Matthews, J., Matthiae, G., Mayotte, E., Mazur, P. O., Medina-Tanco, G., Melo, D., Menshikov, A., Merenda, K. -D., Michal, S., Micheletti, M. I., Miramonti, L., Mollerach, S., Montanet, F., Morello, C., Mostaf??, M., M??ller, A. L., Muller, M. A., Mulrey, K., Mussa, R., Muzio, M., Namasaka, W. M., Nasr-Esfahani, A., Nellen, L., Niculescu-Oglinzanu, M., Niechciol, M., Nitz, D., Nosek, D., Novotny, V., No??ka, L., Nucita, A., N????ez, L. A., Palatka, M., Pallotta, J., Papenbreer, P., Parente, G., Parra, A., Pech, M., Pedreira, F., P??kala, J., Pelayo, R., Pe??a-Rodriguez, J., Pereira Martins, E. E., Perez Armand, J., P??rez Bertolli, C., Perlin, M., Perrone, L., Petrera, S., Pierog, T., Pimenta, M., Pirronello, V., Platino, M., Pont, B., Pothast, M., Privitera, P., Prouza, M., Puyleart, A., Querchfeld, S., Rautenberg, J., Ravignani, D., Reininghaus, M., Ridky, J., Riehn, F., Risse, M., Rizi, V., Rodrigues de Carvalho, W., Rodriguez Rojo, J., Roncoroni, M. J., Roth, M., Roulet, E., Rovero, A. C., Ruehl, P., Saffi, S. J., Saftoiu, A., Salamida, F., Salazar, H., Salina, G., Sanabria Gomez, J. D., S??nchez, F., Santos, E. M., Santos, E., Sarazin, F., Sarmento, R., Sarmiento-Cano, C., Sato, R., Savina, P., Sch??fer, C. M., Scherini, V., Schieler, H., Schimassek, M., Schimp, M., Schl??ter, F., Schmidt, D., Scholten, O., Schov??nek, P., Schr??der, F. G., Schr??der, S., Schulte, J., Sciutto, S. J., Scornavacche, M., Segreto, A., Sehgal, S., Shellard, R. C., Sigl, G., Silli, G., Sima, O., m??da, R., Sommers, P., Soriano, J. F., Souchard, J., Squartini, R., Stadelmaier, M., Stanca, D., Stani??, S., Stasielak, J., Stassi, P., Streich, A., Su??rez-Dur??n, M., Sudholz, T., Suomij??rvi, T., Supanitsky, A. D., up??k, J., Szadkowski, Z., Taboada, A., Tapia, A., Taricco, C., Timmermans, C., Tkachenko, O., Tobiska, P., Todero Peixoto, C. J., Tom??, B., Travaini, A., Travnicek, P., Trimarelli, C., Trini, M., Tueros, M., Ulrich, R., Unger, M., Vaclavek, L., Vacula, M., Galicia, J. F. Vald??s., Valore, L., Varela, E., Varma K. C., V., V??squez-Ram??rez, A., Veberi??, D., Ventura, C., Vergara Quispe, I. D., Verzi, V., Vicha, J., Vink, J., Vorobiov, S., Wahlberg, H., Watanabe, C., Watson, A. A., Weber, M., Weindl, A., Wiencke, L., Wilczy??ski, H., Winchen, T., Wirtz, M., Wittkowski, D., Wundheiler, B., Yushkov, A., Zapparrata, O., Zas, E., Zavrtanik, D., Zavrtanik, M., Zehrer, L., Zepeda, A., High Energy Astrophys. & Astropart. Phys (API, FNWI), Gravitation and Astroparticle Physics Amsterdam, Astronomy and Astrophysics Research Group, Physics, Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Pierre Auger, Aab A., Abreu P., Aglietta M., Albury J.M., Allekotte I., Almela A., Alvarez-Muniz J., Batista R.A., Anastasi G.A., Anchordoqui L., Andrada B., Andringa S., Aramo C., Ferreira P.R.A., Velazquez J.C.A., Asorey H., Assis P., Avila G., Badescu A.M., Bakalova A., Balaceanu A., Barbato F., Luz R.J.B., Becker K.H., Bellido J.A., Berat C., Bertaina M.E., Bertou X., Biermann P.L., Bister T., Biteau J., Blazek J., Bleve C., Bohacova M., Boncioli D., Bonifazi C., Arbeletche L.B., Borodai N., Botti A.M., Brack J., Bretz T., Orchera P.G.B., Briechle F.L., Buchholz P., Bueno A., Buitink S., Buscemi M., Caballero-Mora K.S., Caccianiga L., Canfora F., Caracas I., Carceller J.M., Caruso R., Castellina A., Catalani F., Cataldi G., Cazon L., Cerda M., Chinellato J.A., Choi K., Chudoba J., Chytka L., Clay R.W., Cerutti A.C.C., Colalillo R., Coleman A., Coluccia M.R., Conceicao R., Condorelli A., Consolati G., Contreras F., Convenga F., dos Santos D.C., Covault C.E., Dasso S., Daumiller K., Dawson B.R., Day J.A., de Almeida R.M., de Jesus J., de Jong S.J., de Mauro G., de Mello Neto J.R.T., de Mitri I., de Oliveira J., de Oliveira Franco D., de Palma F., de Souza V., de Vito E., del Rio M., Deligny O., Di Matteo A., Dobrigkeit C., D'Olivo J.C., dos Anjos R.C., Dova M.T., Ebr J., Engel R., Epicoco I., Erdmann M., Escobar C.O., Etchegoyen A., Falcke H., Farmer J., Farrar G., Fauth A.C., Fazzini N., Feldbusch F., Fenu F., Fick B., Figueira J.M., Filipcic A., Fodran T., Freire M.M., Fujii T., Fuster A., Galea C., Galelli C., Garcia B., Vegas A.L.G., Gemmeke H., Gesualdi F., Gherghel-Lascu A., Ghia P.L., Giaccari U., Giammarchi M., Giller M., Glombitza J., Gobbi F., Gollan F., Golup G., Berisso M.G., Vitale P.F.G., Gongora J.P., Gonzalez J.M., Gonzalez N., Goos I., Gora D., Gorgi A., Gottowik M., Grubb T.D., Guarino F., Guedes G.P., Guido E., Hahn S., Hamal P., Hampel M.R., Hansen P., Harari D., Harvey V.M., Haungs A., Hebbeker T., Heck D., Hill G.C., Hojvat C., Horandel J.R., Horvath P., Hrabovsky M., Huege T., Hulsman J., Insolia A., Isar P.G., Janecek P., Johnsen J.A., Jurysek J., Kaapa A., Kampert K.H., Keilhauer B., Kemp J., Klages H.O., Kleifges M., Kleinfeller J., Kopke M., Kunka N., Lago B.L., Lang R.G., Langner N., de Oliveira M.A.L., Lenok V., Letessier-Selvon A., Lhenry-Yvon I., Presti D.L., Lopes L., Lopez R., Lu L., Luce Q., Lucero A., Lundquist J.P., Payeras A.M., Mancarella G., Mandat D., Manning B.C., Manshanden J., Mantsch P., Marafico S., Mariazzi A.G., Maris I.C., Marsella G., Martello D., Martinez H., Bravo O.M., Mastrodicasa M., Mathes H.J., Matthews J., Matthiae G., Mayotte E., Mazur P.O., Medina-Tanco G., Melo D., Menshikov A., Merenda K.-D., Michal S., Micheletti M.I., Miramonti L., Mollerach S., Montanet F., Morello C., Mostafa M., Muller A.L., Muller M.A., Mulrey K., Mussa R., Muzio M., Namasaka W.M., Nasr-Esfahani A., Nellen L., Niculescu-Oglinzanu M., Niechciol M., Nitz D., Nosek D., Novotny V., Nozka L., Nucita A., Nunez L.A., Palatka M., Pallotta J., Papenbreer P., Parente G., Parra A., Pech M., Pedreira F., Pekala J., Pelayo R., Pena-Rodriguez J., Martins E.E.P., Armand J.P., Bertolli C.P., Perlin M., Perrone L., Petrera S., Pierog T., Pimenta M., Pirronello V., Platino M., Pont B., Pothast M., Privitera P., Prouza M., Puyleart A., Querchfeld S., Rautenberg J., Ravignani D., Reininghaus M., Ridky J., Riehn F., Risse M., Rizi V., Rodrigues de Carvalho W., Rojo J.R., Roncoroni M.J., Roth M., Roulet E., Rovero A.C., Ruehl P., Saffi S.J., Saftoiu A., Salamida F., Salazar H., Salina G., Gomez J.D.S., Sanchez F., Santos E.M., Santos E., Sarazin F., Sarmento R., Sarmiento-Cano C., Sato R., Savina P., Schafer C.M., Scherini V., Schieler H., Schimassek M., Schimp M., Schluter F., Schmidt D., Scholten O., Schovanek P., Schroder F.G., Schroder S., Schulte J., Sciutto S.J., Scornavacche M., Segreto A., Sehgal S., Shellard R.C., Sigl G., Silli G., Sima O., Smida R., Sommers P., Soriano J.F., Souchard J., Squartini R., Stadelmaier M., Stanca D., Stanic S., Stasielak J., Stassi P., Streich A., Suarez-Duran M., Sudholz T., Suomijarvi T., Supanitsky A.D., Supik J., Szadkowski Z., Taboada A., Tapia A., Taricco C., Timmermans C., Tkachenko O., Tobiska P., Peixoto C.J.T., Tome B., Travaini A., Travnicek P., Trimarelli C., Trini M., Tueros M., Ulrich R., Unger M., Vaclavek L., Vacula M., Galicia J.F.V., Valore L., Varela E., Varma V.K.C., Vasquez-Ramirez A., Veberic D., Ventura C., Quispe I.D.V., Verzi V., Vicha J., Vink J., Vorobiov S., Wahlberg H., Watanabe C., Watson A.A., Weber M., Weindl A., Wiencke L., Wilczynski H., Winchen T., Wirtz M., Wittkowski D., Wundheiler B., Yushkov A., Zapparrata O., Zas E., Zavrtanik D., Zavrtanik M., Zehrer L., Zepeda A., Research unit Astroparticle Physics, Alvarez-Muniz, J., Batista, R. A., Ferreira, P. R. A., Velazquez, J. C. A., Luz, R. J. B., Bohacova, M., Arbeletche, L. B., Orchera, P. G. B., Cerutti, A. C. C., Conceicao, R., dos Santos, D. C., de Jesus, J., de Mauro, G., de Mitri, I., de Vito, E., del Rio, M., Filipcic, A., Garcia, B., Vegas, A. L. G., Berisso, M. G., Vitale, P. F. G., Gonzalez, J. M., Gonzalez, N., Gora, D., Horandel, J. R., Hrabovsky, M., Kaapa, A., Kopke, M., de Oliveira, M. A. L., Presti, D. L., Lopez, R., Payeras, A. M., Maris, I. C., Bravo, O. M., Mostafa, M., Muller, A. L., Nozka, L., Nunez, L. A., Pekala, J., Pena-Rodriguez, J., Martins, E. E. P., Armand, J. P., Bertolli, C. P., Rojo, J. R., Gomez, J. D. S., Sanchez, F., Schafer, C. M., Schluter, F., Schovanek, P., Schroder, F. G., Schroder, S., Smida, R., Stanic, S., Suarez-Duran, M., Suomijarvi, T., Supik, J., Peixoto, C. J. T., Tome, B., Galicia, J. F. V., Varma, V. K. C., Vasquez-Ramirez, A., Veberic, D., Quispe, I. D. V., and Wilczynski, H.
- Subjects
showers: energy ,longitudinal [showers] ,interaction: model ,Physics::Instrumentation and Detectors ,Astronomy ,Calibration and fitting methods ,Cluster finding ,Data analysis ,Large detector systems for particle and astroparticle physics ,Particle identification methods ,Pattern recognition ,01 natural sciences ,High Energy Physics - Experiment ,Auger ,High Energy Physics - Experiment (hep-ex) ,cluster finding ,surface [detector] ,Observatory ,Large detector systems ,Instrumentation ,Mathematical Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Physics ,Pattern recognition, cluster finding, calibration and fitting methods ,Settore FIS/01 - Fisica Sperimentale ,model [interaction] ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Data analysi ,calibration and fitting methods ,energy [showers] ,observatory ,Pattern recognition, cluster finding, calibration and fitting method ,astroparticle physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,atmosphere [showers] ,air ,neural network ,Astrophysics::High Energy Astrophysical Phenomena ,UHE [cosmic radiation] ,FOS: Physical sciences ,Cosmic ray ,detector: fluorescence ,0103 physical sciences ,ddc:530 ,High Energy Physics ,ddc:610 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,cosmic radiation: UHE ,structure ,particle physics ,network: performance ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Ciencias Exactas ,Cherenkov radiation ,fluorescence [detector] ,Pierre Auger Observatory ,mass spectrum [nucleus] ,showers: atmosphere ,detector: surface ,hep-ex ,010308 nuclear & particles physics ,Física ,resolution ,calibration ,Computational physics ,performance [network] ,Cherenkov counter ,Air shower ,Large detector systems for particle and astroparticle physic ,Experimental High Energy Physics ,High Energy Physics::Experiment ,nucleus: mass spectrum ,showers: longitudinal ,RAIOS CÓSMICOS ,Energy (signal processing) ,astro-ph.IM - Abstract
The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the ground based water-Cherenkov detectors of the Pierre Auger Observatory. The network architecture features recurrent long short-term memory layers to process the temporal structure of signals and hexagonal convolutions to exploit the symmetry of the surface detector array. We evaluate the performance of the network using air showers simulated with three different hadronic interaction models. Thereafter, we account for long-term detector effects and calibrate the reconstructed $X_{\mathrm{max}}$ using fluorescence measurements. Finally, we show that the event-by-event resolution in the reconstruction of the shower maximum improves with increasing shower energy and reaches less than $25~\mathrm{g/cm^{2}}$ at energies above $2\times 10^{19}~\mathrm{eV}$., Published version, 29 pages, 12 figures
- Published
- 2021
- Full Text
- View/download PDF
16. Needle Propagation and Twinkling Characteristics
- Author
-
Arthur Corstanje, C. Strepka, Brian Hare, Jörg P. Rachen, Jörg R. Hörandel, T. Huege, Olaf Scholten, Tobias Winchen, Heino Falcke, G. K. Krampah, H. Pandya, Satyendra Thoudam, Pragati Mitra, Joseph R. Dwyer, A. Nelles, Stijn Buitink, Katie Mulrey, S. ter Veen, T. N. G. Trinh, Astronomy, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,Atmospheric Science ,business.industry ,Astronomy ,imaging ,LOFAR ,needles ,Lightning ,VHF ,Geophysics ,Optics ,Recoil ,Space and Planetary Science ,ddc:550 ,Earth and Planetary Sciences (miscellaneous) ,ddc:530 ,mapping ,business ,lightning ,Twinkling - Abstract
Journal of geophysical research / D 126(6), JD034252 (2021). doi:10.1029/2020JD034252, Recently, a new lightning phenomena, termed needles, has been observed in both VHF and in optical along positive lightning leaders. They appear as small (, Published by Wiley, Hoboken, NJ
- Published
- 2021
- Full Text
- View/download PDF
17. Measurement of the cosmic-ray energy spectrum above 2.5×1018 eV using the Pierre Auger Observatory
- Author
-
Jaroslaw Stasielak, Ana Martina Botti, Marcus Niechciol, Alberto Daniel Supanitsky, Alexey Yushkov, Petr Schovánek, Pavel Horváth, Pedro Assis, Nataliia Borodai, Luis Lopes, Luis Nunez, Carla Bleve, Alberto Blanco, Katharine Mulrey, Antonella Castellina, Francesca Zuccarello, Felicia Carla Tiziana Barbato, Emanuele De Vito, Jose Alfredo Bellido Caceres, Fausto Guarino, Jeffrey Brack, Kai Daumiller, Dariusz Gora, Christian Sarmiento-Cano, Alessio Gorgi, Peter Biermann, Teresa Bister, LORENZO CACCIANIGA, Beatriz Garcia, Bruce Dawson, Alena Bakalova, MASSIMO MASTRODICASA, Edivaldo Moura Santos, Stijn Buitink, Bernardo Tomé, Ana Laura Müller, Mario BUSCEMI, Francesco Salamida, Johannes Hulsman, Henryk Wilczyński, Michael Unger, Ronald Cintra Shellard, Miguel Mostafa, Achille Nucita, Frederic Sarazin, Paul Mantsch, Ruben Conceição, Roger Clay, Lukáš Václavek, Giovanni Marsella, Markus Roth, Jakub Jurysek, Lorenzo Cazon, Eva Dos Santos, Corbin Covault, Francesco Fenu, Dalibor Nosek, Rossella Caruso, Alexandra Saftoiu, Tim Huege, Antonio CONDORELLI, Orazio Zapparrata, Jaime Alvarez-Muniz, Denise Boncioli, Guillermo Torralba Elipe, Martin Erdmann, Bruno Lazarotto Lago, Carlos José Todero Peixoto, Geraldina Golup, Jan Pękala, Maximilian Stadelmaier, Raul Sarmento, Enrique Varela, Antoine Letessier selvon, Vincenzo Rizi, Eleonora Guido, Pedro T. Abreu, Rafael Alves Batista, Arjen Van Vliet, and Jan Ebr
- Subjects
Pierre Auger Observatory ,Physics ,Spectral index ,010308 nuclear & particles physics ,Hadron ,Flux ,Cosmic ray ,Astrophysics ,01 natural sciences ,Flattening ,0103 physical sciences ,010306 general physics ,Anisotropy ,Zenith - Abstract
We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×1018 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×1019 eV. The principal conclusions are(1) The flattening of the spectrum near 5×1018 eV, the so-called "ankle,"is confirmed.(2) The steepening of the spectrum at around 5×1019 eV is confirmed.(3) A new feature has been identified in the spectrum: in the region above the ankle the spectral index γ of the particle flux (∝E-γ) changes from 2.51±0.03 (stat)±0.05 (syst) to 3.05±0.05 (stat)±0.10 (syst) before changing sharply to 5.1±0.3 (stat)±0.1 (syst) above 5×1019 eV.(4) No evidence for any dependence of the spectrum on declination has been found other than a mild excess from the Southern Hemisphere that is consistent with the anisotropy observed above 8×1018 eV.
- Published
- 2020
- Full Text
- View/download PDF
18. Features of the Energy Spectrum of Cosmic Rays above 2.5×1018 eV Using the Pierre Auger Observatory
- Author
-
Jaroslaw Stasielak, Ana Martina Botti, Marcus Niechciol, Alberto Daniel Supanitsky, Alexey Yushkov, Petr Schovánek, Toshihiro Fujii, Pavel Horváth, Pedro Assis, Nataliia Borodai, Luis Lopes, Luis Nunez, Carla Bleve, Alberto Blanco, Katharine Mulrey, Antonella Castellina, Francesca Zuccarello, Felicia Carla Tiziana Barbato, Emanuele De Vito, Jose Alfredo Bellido Caceres, Fausto Guarino, Jeffrey Brack, Kai Daumiller, Dariusz Gora, Christian Sarmiento-Cano, Carola Dobrigkeit Chinellato, Alessio Gorgi, Peter Biermann, Teresa Bister, LORENZO CACCIANIGA, Beatriz Garcia, Bruce Dawson, Alena Bakalova, MASSIMO MASTRODICASA, Edivaldo Moura Santos, Stijn Buitink, Bernardo Tomé, Ana Laura Müller, Mario BUSCEMI, Francesco Salamida, Johannes Hulsman, Henryk Wilczyński, Michael Unger, Ronald Cintra Shellard, Miguel Mostafa, Achille Nucita, Frederic Sarazin, Paul Mantsch, Ruben Conceição, Roger Clay, Lukáš Václavek, Giovanni Marsella, Markus Roth, Jakub Jurysek, Lorenzo Cazon, Eva Dos Santos, Corbin Covault, Francesco Fenu, Dalibor Nosek, Rossella Caruso, Alexandra Saftoiu, Tim Huege, Antonio CONDORELLI, Orazio Zapparrata, Jaime Alvarez-Muniz, Denise Boncioli, Guillermo Torralba Elipe, Martin Erdmann, Bruno Lazarotto Lago, Carlos José Todero Peixoto, Geraldina Golup, Jan Pękala, Maximilian Stadelmaier, Raul Sarmento, Enrique Varela, Antoine Letessier selvon, Vincenzo Rizi, Eleonora Guido, Pedro T. Abreu, Rafael Alves Batista, Arjen Van Vliet, and Jan Ebr
- Subjects
010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,010306 general physics ,01 natural sciences - Published
- 2020
- Full Text
- View/download PDF
19. Radio Emission Reveals Inner Meter-Scale Structure of Negative Lightning Leader Steps
- Author
-
Heino Falcke, G. K. Krampah, B. Neijzen, H. Pandya, Joseph R. Dwyer, Jörg P. Rachen, Arthur Corstanje, Brian Hare, Ute Ebert, Antonio Bonardi, Tim Huege, Jörg R. Hörandel, Tobias Winchen, S Sander Nijdam, Olaf Scholten, Stijn Buitink, Katie Mulrey, S. ter Veen, Laura Rossetto, T. N. G. Trinh, Pragati Mitra, A. Nelles, Elementary Processes in Gas Discharges, Astronomy, Research unit Astroparticle Physics, and Centrum Wiskunde & Informatica, Amsterdam (CWI), The Netherlands
- Subjects
Physics ,Astronomy ,STREAMERS ,General Physics and Astronomy ,Plasma ,Astrophysics ,LOFAR ,Low frequency ,Radiation ,01 natural sciences ,Lightning ,Corona ,13. Climate action ,INCEPTION ,0103 physical sciences ,Thunderstorm ,Metre ,ddc:530 ,010306 general physics - Abstract
We use the Low Frequency Array (LOFAR) to probe the dynamics of the stepping process of negatively charged plasma channels (negative leaders) in a lightning discharge. We observe that at each step of a leader, multiple pulses of vhf (30-80 MHz) radiation are emitted in short-duration bursts (
- Published
- 2020
- Full Text
- View/download PDF
20. Properties of the Lunar Detection Mode for ZeV-Scale Particles with LOFAR
- Author
-
Anna Nelles, Arthur Corstanje, Olaf Scholten, Heino Falcke, Tobias Winchen, A. Hörandel, Pragati Mitra, T. N. G. Trinh, Brian Hare, Antonio Bonardi, Satyendra Thoudam, Jörg P. Rachen, S. ter Veen, Laura Rossetto, Stijn Buitink, Katie Mulrey, Pim Schellart, Astronomy and Astrophysics Research Group, Physics, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,010308 nuclear & particles physics ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Detector ,Mode (statistics) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Flux ,Cosmic ray ,LOFAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Physics::Geophysics ,Radio telescope ,Particle shower ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Energy (signal processing) - Abstract
The steep decrease of the flux of ultra-high energy cosmic rays (UHECR) provides a challenge to answer the long standing question about their origin and nature. A significant increase in detector volume may be achieved byemploying Earth’s moon as a detector that is read out using existing Earth-bound radio telescopes by searching for the radio pulses emitted by the particle shower in the lunar rock. In this contribution we will report on the properties of a corresponding detection mode currently under development for the LOFAR Radio telescope.
- Published
- 2019
- Full Text
- View/download PDF
21. Precision Lightning Imaging with LOFAR
- Author
-
Tim Huege, Alex Pel, Heino Falcke, J. R. Hoerandel, Gia Trinh, Tobias Winchen, H. Pandya, Brian Hare, Pragati Mitra, G. K. Krampah, ter Sander Veen, Olaf Scholten, Antonio Bonardi, Arthur Corstanje, Anna Nelles, Laura Rossetto, Stijn Buitink, Katie Mulrey, and J. P. Rachen
- Subjects
Astronomy ,LOFAR ,Lightning ,Geology ,Remote sensing - Abstract
We report on the improvements of our lightning imaging technique over what was reported in Hare2019, where we map lightning in 3D using timing obtained from the cross-correlation of the signals from antenna pairs in broadband VHF (30 — 80 MHZ). We use the infrastructure offered by LOFAR (LOw Frequency Array), a software radio telescope.The infrastructure of LOFAR allows us to use a large number of simple dual-polarized dipole antennas arranged in stations of 48 antennas with a diameter of about 60m. We limit ourselves to the use of the Dutch stations only, which gives us baselines of up to 100 km. The data are sampled at 200 MHz giving 5 nanoseconds time between samples. We use LOFAR in the mode where it saves the full time-series spectra for five seconds for every antenna in the array. Upon a trigger, the data for all Dutch stations is stored for later off-line processing.In imaging a flash our bottleneck is to handle the confusion limit. Because of the high density of sources, pulses that are detected in one time-order in the first antenna may have changed order in a second that is at an appreciable distance from the first. The pulse density where this problem surfaces depends on the imaging technique. In our new imaging method we use an approach inspired by the Kalman-filter technique. In the presentation the new technique will be explained. This allows us to obtain a larger number of located sources as compared to the approach used in Hare2019 (sometimes as much as three times as many) which allows for a more detailed analysis of small structures seen in lightning.To show the strength of the new technique we show some images of positive and negative leader development as well as a return stroke. Hare2019: B. Hare et al., Nature 568, 360–363 (2019).
- Published
- 2020
22. On the cosmic-ray energy scale of the LOFAR radio telescope
- Author
-
Arthur Corstanje, A. Nelles, Katharine Mulrey, Brian Hare, Tobias Winchen, G. K. Krampah, Satyendra Thoudam, Tim Huege, Jörg P. Rachen, Olaf Scholten, Pragati Mitra, S. ter Veen, Stijn Buitink, T. N. G. Trinh, Jörg R. Hörandel, Heino Falcke, H. Pandya, Physics, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Astronomy
- Subjects
detector [cosmic radiation] ,air ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,magnetic field ,Cosmic ray ,7. Clean energy ,01 natural sciences ,Electromagnetic radiation ,Radio telescope ,energy [cosmic radiation] ,electromagnetic [energy] ,0103 physical sciences ,plastics [scintillation counter] ,ddc:530 ,energy [radiation] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,Pierre Auger Observatory ,Physics ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Radiant energy ,Astronomy and Astrophysics ,LOFAR ,calibration ,Auger ,Computational physics ,observatory ,detector [radio wave] ,Air shower ,Antenna (radio) ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Energy (signal processing) ,astro-ph.IM ,atmosphere [showers] - Abstract
Cosmic rays are routinely measured at LOFAR, both with a dense array of antennas and with the LOFAR Radboud air shower Array (LORA) which is an array of plastic scintillators. In this paper, we present two results relating to the cosmic-ray energy scale of LOFAR. First, we present the reconstruction of cosmic-ray energy using radio and particle techniques along with a discussion of the event-by-event and absolute scale uncertainties. The resulting energies reconstructed with each method are shown to be in good agreement, and because the radio-based reconstructed energy has smaller uncertainty on an event-to-event basis, LOFAR analyses will use that technique in the future. Second, we present the radiation energy of air showers measured at LOFAR and demonstrate how radiation energy can be used to compare the energy scales of different experiments. The radiation energy scales quadratically with the electromagnetic energy in an air shower, which can in turn be related to the energy of the primary particle. Once the local magnetic field is accounted for, the radiation energy allows for a direct comparison between the LORA particle-based energy scale and that of the Pierre Auger Observatory. They are shown to agree to within (6$\pm$20)% for a radiation energy of 1 MeV, where the uncertainty on the comparison is dominated by the antenna calibrations of each experiment. This study motivates the development of a portable radio array which will be used to cross-calibrate the energy scales of different experiments using radiation energy and the same antennas, thereby significantly reducing the uncertainty on the comparison.
- Published
- 2020
- Full Text
- View/download PDF
23. NuRadioMC - Simulation Code for the Next Generation of Radio Neutrino Detectors
- Author
-
U. Latif, K. D. de Vries, J. C. Hanson, C. Pfender, Brian Clark, Abigail G. Vieregg, Jaime Alvarez-Muñiz, D. Seckel, D. Z. Besson, Stephanie Wissel, Yue Pan, Ilse Plaisier, J. Torres Espinosa, Christoph Welling, Amy Connolly, Cosmin Deaconu, Simona Toscano, C. Persichilli, R. Lahmann, Benjamin Hokanson-Fasig, Tobias Winchen, Stuart Kleinfelder, Daniel García-Fernández, Anna Nelles, N. van Eijndhoven, Stijn Buitink, S. W. Barwick, and Christian Glaser
- Subjects
Physics ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Signal ,Universe ,Computational physics ,Software ,Neutrino detector ,Electric field ,High Energy Physics::Experiment ,Neutrino ,business ,media_common - Abstract
The detection of astrophysical neutrinos by IceCube has opened a new window for the observation of our universe. The use of antennas for detecting astroparticles has been proven useful and accurate after many years of radio cosmic-ray detections, and will be a valuable asset for increasing the statistics for the detection of neutrinos < 10 PeV and reaching out to the highest energies. The radio technique requires realistic and precise simulations of the electric field created after the neutrino interacts with the detector volume, how it propagates through media, and what measurable signal it produces in the detector. With the goal of providing accurate, fast simulations of neutrino-induced electric fields, we have created the NuRadioMC code. It builds on the experience of software used for current radio neutrino and cosmic ray experiments.
- Published
- 2019
- Full Text
- View/download PDF
24. Investigation of Ultra-Luminous Infrared Galaxies as Obscured High-Energy Neutrino Source Candidates
- Author
-
Stijn Buitink, Nick Van Eijndhoven, Pablo Correa, Krijn De Vries, Physics, Faculty of Sciences and Bioengineering Sciences, and Elementary Particle Physics
- Subjects
Luminous infrared galaxy ,Physics ,Active galactic nucleus ,Infrared ,Star formation ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Flux ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,High Energy Physics::Experiment ,Astrophysics::Earth and Planetary Astrophysics ,Neutrino ,Astrophysics::Galaxy Astrophysics ,Fermi Gamma-ray Space Telescope - Abstract
Ultra-Luminous Infrared Galaxies (ULIRGs) are the most luminous objects in the infrared sky. With infrared luminosities exceeding $10^{12}$ solar luminosities, ULIRGs contain strong star formation regions which could power hadronic acceleration. Moreover, a significant fraction of ULIRGs have been found to host Active Galactic Nuclei, which could also be a source of hadronic acceleration. Furthermore, such high infrared luminosities indicate that large amounts of dust are present in these objects. In the presence of hadronic acceleration, this dust not only represents an excellent target for high-energy neutrino production through the \textit{pp}-channel, but it could also attenuate a significant fraction of the gamma rays that are produced in this process. This could relieve the apparent tension between the diffuse IceCube neutrino flux and the diffuse gamma-ray flux measured by \textit{Fermi}-LAT. We present our source selection criteria and IceCube sensitivities in view of a search for high-energy neutrinos from these so far unexplored objects.
- Published
- 2019
- Full Text
- View/download PDF
25. Observations outside Radio Astronomy
- Author
-
Olaf Scholten, Jose Bacelar, Stijn Buitink, Heino Falcke, Hans van der Marel, Roland Klees, Arnold van Ardenne, Maaike Mevius, Mark Bentum, Koos Kegel, and Andre Bos
- Subjects
Radio telescope ,symbols.namesake ,Galileo (satellite navigation) ,symbols ,Astronomy ,Mars Exploration Program ,LOFAR ,Space weather ,Ionosphere ,Geology ,Radio astronomy - Abstract
Observations outside Radio Astronomy Chapter 17.1: - The NuMoon experiment at the WSRT Chapter 17.2: - Geodesy and Gravity at the WSRT Chapter 17.3: - Ionosphere, the WSRT, LOFAR and Space Weather - The search for NASA’s Mars Polar Lander Chapter 17.4: - A Westerbork Radio Telescope for Galileo Monitoring - Discovery of Heaven in Westerbork
- Published
- 2019
- Full Text
- View/download PDF
26. Cosmic Ray Mass Measurements with LOFAR
- Author
-
Anna Nelles, Antonio Bonardi, Laura Rossetto, Olaf Scholten, Satyendra Thoudam, Pragati Mitra, Tobias Winchen, Sander ter Veen, Jörg P. Rachen, Jörg R. Hörandel, Heino Falcke, Stijn Buitink, Katie Mulrey, Arthur Corstanje, Pim Schellart, Gia Trinh, J. Emilio Enriquez, Research unit Astroparticle Physics, Physics, Astronomy and Astrophysics Research Group, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,LOFAR ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physics and Astronomy(all) ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Dipole antenna ,Mass analysis ,Particle density ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,Energy (signal processing) ,Dense core - Abstract
In the dense core of LOFAR individual air showers are detected by hundreds of dipole antennas simultaneously. We reconstruct X max by using a hybrid technique that combines a two-dimensional fit of the radio profile to CoREAS simulations and a one-dimensional fit of the particle density distribution. For high-quality detections, the statistical uncertainty on X max is smaller than 20 g/cm 2 . We present results of cosmic-ray mass analysis in the energy regime of 10 17 - 10 17.5 eV. This range is of particular interest as it may harbor the transition from a Galactic to an extragalactic origin of cosmic rays.
- Published
- 2017
27. TEC, Trigger and Check, preparing LOFAR for Lunar observations
- Author
-
Jörg P. Rachen, Pim Schellart, Jörg R. Hörandel, Sander ter Veen, Olaf Scholten, Laura Rossetto, Katey Mulrey, Heino Falcke, J. Emilio Enriquez, Antonio Bonardi, Satyendra Thoudam, Gia Trinh, Anna Nelles, Stijn Buitink, Pragati Mitra, Tobias Winchen, Arthur Corstanje, Maaijke Mevius, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, and Research unit Astroparticle Physics
- Subjects
Physics ,Total electron content ,010308 nuclear & particles physics ,Aperture ,QC1-999 ,TEC ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,LOFAR ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,Physics and Astronomy(all) ,01 natural sciences ,Radio telescope ,0103 physical sciences ,Neutrino ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) - Abstract
One of the main ways to use radio to detect Ultra High Energy Neutrinos and Cosmic Rays is the Lunar Askaryan technique, that uses the Moon as a target and searches for nanosecond pulses with large radio telescopes. To use low frequency aperture arrays, such as LOFAR and the SKA, pose new challenges and possibilities in detection techniques of short radio pulses and to measure the Total Electron Content (TEC). As a prepatory work, we have used other measurements that use similar techniques, or that can answer a specific question, with the LOFAR radio telescope. This contribution reports on our work on triggering on short radio signals, post-event imaging of radio signals from buffered data and methods to determine the TEC-value.
- Published
- 2017
- Full Text
- View/download PDF
28. Towards real-time identification of cosmic rays with LOw-Frequency ARray radio antennas
- Author
-
Arthur Corstanje, Jörg P. Rachen, Jörg R. Hörandel, Olaf Scholten, Heino Falcke, Antonio Bonardi, Anna Nelles, Pragati Mitra, Pim Schellart, Satyendra Thoudam, Gia Trinh, Tobias Winchen, J. Emilio Enriquez, Sander ter Veen, Stijn Buitink, Katie Mulrey, Laura Rossetto, Research unit Astroparticle Physics, Physics, Astronomy and Astrophysics Research Group, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physics and Astronomy(all) ,Radiation ,Low frequency ,01 natural sciences ,Atmosphere ,Background noise ,0103 physical sciences ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Remote sensing ,Physics ,010308 nuclear & particles physics ,business.industry ,Electrical engineering ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Identification (information) ,Experimental High Energy Physics ,Antenna (radio) ,business - Abstract
Cosmic rays entering the Earth's atmosphere produce Extensive Air Showers, which emit a radio signal through Geo-magnetic radiation and Askaryan emission. At the present time, one of the biggest challenges for assessing the Radio detection as a valuable technique for Cosmic-ray observation is to identify in real-time the very short (less than 100 ns) radio signals over the background noise. In this work, we present the latest updates on the real-time identification of radio signals from Extensive Air Showers by using the data from LOFAR Low Band Antenna stations, which are sensitive in the 30-80 MHz region.
- Published
- 2017
- Full Text
- View/download PDF
29. The mass composition of cosmic rays measured with LOFAR
- Author
-
Pim Schellart, Stijn Buitink, Katie Mulrey, Anna Nelles, Satyendra Thoudam, Tobias Winchen, Heino Falcke, Arthur Corstanje, T. N. G. Trinh, Jörg P. Rachen, S. ter Veen, Jörg R. Hörandel, Laura Rossetto, Olaf Scholten, Antonio Bonardi, Pragati Mitra, and Research unit Astroparticle Physics
- Subjects
Physics::Instrumentation and Detectors ,Astronomy ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Electron ,Astrophysics ,01 natural sciences ,law.invention ,Atmosphere ,law ,0103 physical sciences ,Ultra-high-energy cosmic ray ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,Astroparticle physics ,Physics ,PAMELA detector ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Air shower ,High Energy Physics::Experiment - Abstract
High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30 to 240 MHz. The data are used to determine the properties of the incoming cosmic rays. The radio technique is now routinely used to measure the arrival direction, the energy, and the particle type (atomic mass) of cosmic rays in the energy range from 1017 to 1018 eV. This energy region is of particular astrophysical interest, since in this regime a transition from a Galactic to an extra-galactic origin of cosmic rays is expected. For illustration, the LOFAR results are used to set constraints on models to describe the origin of high-energy cosmic rays.
- Published
- 2017
30. Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain
- Author
-
Olaf Scholten, Heino Falcke, Antonio Bonardi, Tobias Winchen, S. ter Veen, Stijn Buitink, Katie Mulrey, Arthur Corstanje, Pim Schellart, Laura Rossetto, T. N. G. Trinh, Anna Nelles, Satyendra Thoudam, Brian Hare, Jörg R. Hörandel, Pragati Mitra, Jörg P. Rachen, T. Huege, Astronomy and Astrophysics Research Group, Physics, and Elementary Particle Physics
- Subjects
Astroparticle physics ,Physics ,Spectral shape analysis ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmic ray ,LOFAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Signal ,Signal chain ,Computational physics ,0103 physical sciences ,ddc:540 ,Calibration ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Energy (signal processing) ,astro-ph.IM - Abstract
The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio emission from extensive air showers, yielding information about the primary cosmic ray. Interpreting the measured data requires an absolute and frequency-dependent calibration of the LOFAR system response. This is particularly important for spectral analyses, because the shape of the detected signal holds information about the shower development. We revisit the calibration of the LOFAR antennas in the range of 30 - 80 MHz. Using the Galactic emission and a detailed model of the LOFAR signal chain, we find an improved calibration that provides an absolute energy scale and allows for the study of frequency-dependent features in measured signals. With the new calibration, systematic uncertainties of 13% are reached, and comparisons of the spectral shape of calibrated data with simulations show promising agreement., Comment: 23 pages, 10 figures
- Published
- 2019
- Full Text
- View/download PDF
31. Status of the Lunar Detection Mode for Cosmic Particles of LOFAR
- Author
-
T. N. G. Trinh, Brian Hare, Satyendra Thoudam, Stijn Buitink, Olaf Scholten, Katharine Mulrey, Anna Nelles, Heino Falcke, Pragati Mitra, Tobias Winchen, Arthur Corstanje, A. Bonardi, S. ter Veen, Laura Rossetto, Pim Schellart, Jörg P. Rachen, Jörg R. Hörandel, Physics, Astronomy and Astrophysics Research Group, Faculty of Sciences and Bioengineering Sciences, Elementary Particle Physics, and Faculty of Economic and Social Sciences and Solvay Business School
- Subjects
History ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Low frequency ,01 natural sciences ,Education ,Askaryan effect ,Radio telescope ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,astro-ph.HE ,COSMIC cancer database ,010308 nuclear & particles physics ,Mode (statistics) ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Computer Science Applications ,Orders of magnitude (time) ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,astro-ph.IM - Abstract
Cosmic particles hitting Earth's moon produce radio emission via the Askaryan effect. If the resulting radio ns-pulse can be detected by radio telescopes, this technique potentially increases the available collective area for ZeV scale particles by several orders of magnitude compared to current experiments. The LOw Frequency ARray (LOFAR) is the largest radio telescope operating in the optimum frequency regime for this technique. In this contribution, we report on the status of the implementation of the lunar detection mode at LOFAR., Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium (ECRS), Barnaul/Belokurikha, 2018
- Published
- 2019
32. The cosmic-ray air-shower signal in Askaryan radio detectors
- Author
-
A. O Murchadha, Stijn Buitink, Olaf Scholten, Krijn D. de Vries, Nick van Eijndhoven, Thomas Meures, Research unit Astroparticle Physics, Physics, Elementary Particle Physics, and Astronomy and Astrophysics Research Group
- Subjects
Coherent transition radiation ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Flux ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Askaryan effect ,Atmosphere ,0103 physical sciences ,Neutrinos ,Radio detection ,010306 general physics ,Cosmic rays ,Askaryan radiation ,Physics::Atmospheric and Oceanic Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Air shower ,Transition radiation ,Astrophysics::Earth and Planetary Astrophysics ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We discuss the radio emission from high-energy cosmic-ray induced air showers hitting Earth’s surface before the cascade has died out in the atmosphere. The induced emission gives rise to a radio signal which should be detectable in the currently operating Askaryan radio detectors built to search for the GZK neutrino flux in ice. The in-air emission, the in-ice emission, as well as a new component, the coherent transition radiation when the particle bunch crosses the air–ice boundary, are included in the calculations.
- Published
- 2016
- Full Text
- View/download PDF
33. Cosmic-ray energy spectrum and composition up to the ankle: the case for a second Galactic component
- Author
-
Abraham Achterberg, A. van Vliet, Satyendra Thoudam, Stijn Buitink, Jörg P. Rachen, Jörg R. Hörandel, Heino Falcke, Physics, and Astronomy and Astrophysics Research Group
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,FOS: Physical sciences ,chemistry.chemical_element ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,outflows ,Auger ,Diffusion ,cosmic rays ,Observatory ,0103 physical sciences ,Energy spectrum ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Helium ,Astrophysics::Galaxy Astrophysics ,ISM: supernova remnants ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,010308 nuclear & particles physics ,Component (thermodynamics) ,Astronomy and Astrophysics ,Supernova ,chemistry ,Space and Planetary Science ,stars: winds ,Astrophysics - High Energy Astrophysical Phenomena ,galaxies: ISM - Abstract
We have carried out a detailed study to understand the observed energy spectrum and composition of cosmic rays with energies up to ~10^18 eV. Our study shows that a single Galactic component with subsequent energy cut-offs in the individual spectra of different elements, optimised to explain the observed spectra below ~10^14 eV and the knee in the all-particle spectrum, cannot explain the observed all-particle spectrum above ~2x10^16 eV. We discuss two approaches for a second component of Galactic cosmic rays -- re-acceleration at a Galactic wind termination shock, and supernova explosions of Wolf-Rayet stars, and show that the latter scenario can explain almost all observed features in the all-particle spectrum and the composition up to ~10^18 eV, when combined with a canonical extra-galactic spectrum expected from strong radio galaxies or a source population with similar cosmological evolution. In this two-component Galactic model, the knee at ~ 3x10^15 eV and the second knee at ~10^17 eV in the all-particle spectrum are due to the cut-offs in the first and second components, respectively. We also discuss several variations of the extra-galactic component, from a minimal contribution to scenarios with a significant component below the ankle (at ~4x10^18 eV), and find that extra-galactic contributions in excess of regular source evolution are neither indicated nor in conflict with the existing data. Our main result is that the second Galactic component predicts a composition of Galactic cosmic rays at and above the second knee that largely consists of helium or a mixture of helium and CNO nuclei, with a weak or essentially vanishing iron fraction, in contrast to most common assumptions. This prediction is in agreement with new measurements from LOFAR and the Pierre Auger Observatory which indicate a strong light component and a rather low iron fraction between ~10^17 and 10^18 eV., Added Table 4; Published in A&A, 595 (2016) A33 (Highlight paper)
- Published
- 2016
- Full Text
- View/download PDF
34. Particle Physics with LOFAR
- Author
-
Stijn Buitink
- Subjects
Atmosphere ,Physics ,Air shower ,Cosmic ray ,Astrophysics ,Ultra-high-energy cosmic ray ,LOFAR ,Hilbert envelope - Abstract
High energy cosmic rays produce cascades of secondary particles in the atmosphere, known as air showers, which emit very short radio flashes (several tens of nanoseconds). The detection of these short radio flashes requires the use of the Transient Buffer Boards (TBBs). In this chapter we will discuss how to use the TBBs, how to calibrate the data, and some typical processing techniques. We round off with an introduction to cosmic ray air shower analysis with LOFAR.
- Published
- 2018
- Full Text
- View/download PDF
35. A first search for cosmogenic neutrinos with the ARIANNA Hexagonal Radio Array
- Author
-
D. Z. Besson, R. G. Bose, G. Yodh, A. Samanta, Ulrik I. Uggerhøj, E. C. Berg, Stijn Buitink, Kenneth L. Ratzlaff, J. H. Buckley, Jordan C. Hanson, G. Binder, K. Dookayka, J. Walker, S. Euler, Hans Niederhausen, Brian Rauch, L. Gerhardt, Leif Gustafsson, Steven W. Barwick, G. E. Simburger, C. Reed, W. R. Binns, T. Duffin, M. H. Israel, S. R. Klein, C. Persichelli, P. F. Dowkontt, D. J. Boersma, Stuart A. Kleinfelder, V. Bugaev, Allan Hallgren, M. A. Olevitch, R. Young, M. Roumi, D. L. Braun, J. Tatar, T. Stezelberger, J. Kiryluk, Physics, and Astronomy and Astrophysics Research Group
- Subjects
Physics::Instrumentation and Detectors ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Antartica ,Flux ,FOS: Physical sciences ,Astrophysics ,Atomic ,ARIANNA Experiment ,Nuclear physics ,Particle and Plasma Physics ,Neutrino ,Cosmogenic ,Nuclear ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cherenkov radiation ,Physics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Detector ,Molecular ,Astronomy and Astrophysics ,Solar neutrino problem ,GZK ,Radio ,Nuclear & Particles Physics ,radio ,Neutrino detector ,High energy ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Antarctica ,High Energy Physics::Experiment ,Radio frequency ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,physics ,Astronomical and Space Sciences ,astro-ph.IM - Abstract
The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models., 22 pages, 22 figures. Published in Astroparticle Physics
- Published
- 2015
- Full Text
- View/download PDF
36. Acceleration in Astrophysical Environments with CR Propa
- Author
-
Olaf Scholten, Tobias Winchen, Stijn Buitink, Aritra Ghosh, and Research unit Astroparticle Physics
- Subjects
Particle acceleration ,Physics ,Acceleration ,Spectral index ,Cosmic ray ,Computational physics ,Shock (mechanics) - Abstract
CR Propa is a public astrophysical simulation framework for studying propagation and interaction physics of primary and secondary cosmic ray particles. We have incorporated particle acceleration within CR Propa and studied the effects of geometry on the resulting spectral index in diffusive shock acceleration. In this contribution, we present our results and compare them to analytical calculations. In future, this development will allow incorporation of various loss mechanisms, production of secondaries within the simulation model due to pre-existing capabilities of CR Propa.
- Published
- 2017
- Full Text
- View/download PDF
37. Extreme-precision measurements of cosmic rays via radio detection with the SKA
- Author
-
Anne Zilles, Stijn Buitink, Tim Huege, Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,density ,showers: atmosphere ,air ,engineering ,Astrophysics::High Energy Astrophysical Phenomena ,Bandwidth (signal processing) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,radio wave: detector ,Mass composition ,pulsed ,7. Clean energy ,Galaxy ,mass spectrum ,Antenna array ,cosmic radiation ,13. Climate action ,Mass spectrum ,galaxy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Radio detection ,Radio wave - Abstract
International audience; The future SKA-low will provide an extremely dense and very homogeneous antenna array on an area of roughly 0.5 km$^2$ and with a large bandwidth of 50-350 MHz. With minor engineering changes it would be ideally suited to detect extensive air showers initiated by cosmic rays in the Earth’s atmosphere via their pulsed radio emission. The very precise measurements of individual cosmic-ray air-shower events allows detailed studies of the mass composition in the energy range around 10$^{17}$ eV where the transition from a galactic to an extragalactic origin could occur. We present a simulation study on cosmic-ray detection with focus on the potential to reconstruct the depth of shower maximum for individual showers to be measured with SKA-low, resulting in an expected intrinsic uncertainty on the X$_{\mathrm{max}}$ reconstruction of less than 10 g/cm$^2$. We will discuss the dependencies of the uncertainty on the direction and energy of the primary as well as the parameters of the antenna array, e.g. the analysed bandwidth and antenna density.
- Published
- 2017
- Full Text
- View/download PDF
38. The circular polarization in radio emission from extensive air showers
- Author
-
Tobias Winchen, Pim Schellart, J. P. Rachen, Jörg R. Hörandel, Arthur Corstanje, A. Nelles, Pragati Mitra, Antonio Bonardi, Heino Falcke, Gia Trinh, Olaf Scholten, Satyendra Thoudam, Brian Hare, S. ter Veen, Laura Rossetto, Stijn Buitink, Katie Mulrey, and Research unit Astroparticle Physics
- Subjects
Physics ,Frequency band ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Computational physics ,Askaryan effect ,Azimuth ,symbols.namesake ,Air shower ,Electric field ,symbols ,Stokes parameters ,Circular polarization - Abstract
At LOFAR we measure the radio emission from extensive air showers (EAS) in the frequency band of 30 -- 80~MHz in dual-polarized antennas. Through an accurate antenna calibration we can determine the complete set of four Stokes parameters that uniquely determine the linear and circular polarization of the radio signal for an EAS. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is explained as due to the interfering contributions from the two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the Askaryan effect. The measured data show a quantitative agreement with microscopic CORSIKA/CoREAS calculations. Having a very detailed understanding of radio emission from EAS, opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.
- Published
- 2017
- Full Text
- View/download PDF
39. LORA: A scintillator array for LOFAR to measure extensive air showers
- Author
-
Maria Krause, Jörg R. Hörandel, A. Horneffer, J. E. Enriquez, Wilfred Frieswijk, A. Nelles, M. van den Akker, Heino Falcke, S. ter Veen, Arthur Corstanje, Pim Schellart, Stijn Buitink, Satyendra Thoudam, Olaf Scholten, Research unit Astroparticle Physics, and KVI - Center for Advanced Radiation Technology
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LORA ,High Energy Physics - Experiment ,Radio telescope ,High Energy Physics - Experiment (hep-ex) ,KASCADE ,Extensive air showers ,Radio detection ,Cosmic rays ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Physics::Atmospheric and Oceanic Physics ,Astroparticle physics ,Physics ,Scintillation ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Instrumentation and Detectors (physics.ins-det) ,COSMIC-RAYS ,RADIO TELESCOPE ,Air shower ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Scintillation detectors ,Astrophysics - Instrumentation and Methods for Astrophysics ,EMISSION - Abstract
The measurement of the radio emission from extensive air showers, induced by high-energy cosmic rays is one of the key science projects of the LOFAR radio telescope. The LOfar Radboud air shower Array (LORA) has been installed in the core of LOFAR in the Netherlands. The main purpose of LORA is to measure the properties of air showers and to trigger the read-out of the LOFAR radio antennas to register extensive air showers. The experimental set-up of the array of scintillation detectors and its performance are described., Comment: 10 pages, Accepted for publication in Nuclear Instruments and Methods A
- Published
- 2014
- Full Text
- View/download PDF
40. Search for Cosmic Particles with the Moon and LOFAR
- Author
-
T. N. G. Trinh, Olaf Scholten, S. ter Veen, Jörg P. Rachen, Jörg R. Hörandel, Laura Rossetto, Arthur Corstanje, Anna Nelles, Satyendra Thoudam, Pragati Mitra, Tobias Winchen, J. E. Enriquez, Katharine Mulrey, A. Bonardi, Heino Falcke, Pim Schellart, Stijn Buitink, Research unit Astroparticle Physics, Physics, Astronomy and Astrophysics Research Group, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,QC1-999 ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LOFAR ,Physics and Astronomy(all) ,01 natural sciences ,Radio telescope ,0103 physical sciences ,Particle ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) - Abstract
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. A significant increase in the number of detected UHECR is expected to be achieved by employing Earth's moon as detector, and search for short radio pulses that are emitted when a particle interacts in the lunar rock. Observation of these short pulses with current and future radio telescopes also allows to search for the even lower fluxes of neutrinos with energies above $10^{22}$ eV, that are predicted in certain Grand-Unifying-Theories (GUTs), and e.g. models for super-heavy dark matter (SHDM). In this contribution we present the initial design for such a search with the LOFAR radio telescope., Comment: To be published in the Proceedings of the ARENA2016 conference, Groningen, The Netherlands
- Published
- 2017
41. Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon
- Author
-
Satyendra Thoudam, Tobias Winchen, Pim Schellart, Olaf Scholten, A. Nelles, T. N. G. Trinh, J.R. Hörandel, Stijn Buitink, Katie Mulrey, Antonio Bonardi, Arthur Corstanje, J. E. Enriquez, Heino Falcke, Pragati Mitra, Jörg P. Rachen, S. ter Veen, Laura Rossetto, and Research unit Astroparticle Physics
- Subjects
Physics ,History ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Pipeline (computing) ,Detector ,Dark matter ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Cosmic ray ,010103 numerical & computational mathematics ,LOFAR ,01 natural sciences ,Signal ,Computer Science Applications ,Education ,Computational physics ,Radio telescope ,0103 physical sciences ,0101 mathematics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Energy (signal processing) - Abstract
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above $10^{22}$ eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earth's moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype., Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), USA
- Published
- 2017
42. Astrophysical interpretation of Pierre Auger Observatory measurements of the UHECR energy spectrum and mass composition
- Author
-
R. Conceição, Miroslav Hrabovský, A. Haungs, J. L. Harton, S. G. Blaess, P. Mantsch, Z. Szadkowski, Carola Dobrigkeit, M. Plum, M. E. Bertaina, Alan Watson, Mihai Niculescu-Oglinzanu, J. Alvarez Castillo, F. Diogo, M. Zavrtanik, R. M. de Almeida, D. Reinert, Stijn Buitink, Andrea Chiavassa, M. Malacari, C. Scarso, P. Heimann, Andrej Filipcic, M. Suarez Durán, L. Lopes, E. Kemp, Serguei Vorobiov, L. Molina-Bueno, D. Melo, D. Nitz, M. Settimo, Hernan Wahlberg, David Walz, O. A. Taborda, R. Squartini, R. R. Prado, D. Pakk Selmi-Dei, Petr Schovanek, M. T. Dova, Radomir Smida, J.E. Swain, R. Sato, G. Torralba Elipe, E.M. Holt, L. R. Wiencke, R. Krause, P. Ristori, O. Kambeitz, A. Saleh, M. Gómez Berisso, R. C. Shellard, Ph. Lebrun, Denis Stanca, Olivier Ravel, S. Jansen, A. Fuster, M. Trini, Alejandro Almela, G. Cataldi, E. Varela, J.D. Sanabria Gomez, L. Valore, P.H. Nguyen, E. Mayotte, M. Ambrosio, V. Scherini, A. Śmiałkowski, Philipp Papenbreer, G. Medina-Tanco, David Wittkowski, A. C. Rovero, Lili Yang, G. van Aar, Alexandra Saftoiu, J.R. Hörandel, Mario Buscemi, Sarka Wykes, Stefan Müller, Alexandru Balaceanu, I. Jandt, Ana Martina Botti, Manuela Mallamaci, Jaime Alvarez-Muñiz, Alexandru Gherghel-Lascu, Piotr Homola, R. Ramos-Pollant, Carla Aramo, Vincenzo Rizi, D. Martello, Ralf Ulrich, A. Bridgeman, Muller, B. Caccianiga, I. Allekotte, M. Ziolkowski, Silvia Mollerach, W. R. de Carvalho, O. Martínez Bravo, C. J. Todero Peixoto, J. J. Beatty, Paul Sommers, L. Ochilo, I. A. Minaya, B. Keilhauer, S. J. Saffi, B. Vargas Cárdenas, T. Suomijärvi, Marco Giammarchi, A. Blanco, R. Piegaia, N. Fazzini, N. Krohm, P. Gouffon, B. Sarkar, Christian Glaser, S. J. Sciutto, Dusan Mandat, J. Pallotta, E. J. Quel, M. J. Cooper, A. Insolia, M. Kleifges, D. Zavrtanik, Tobias Winchen, Julien Aublin, Karen S. Caballero-Mora, Octavian Fratu, H. Martinez, Bruce Rafael Mellado Garcia, C. Medina, Miroslav Pech, J. Chudoba, R.C. dos Anjos, J. Espadanal, J. Pȩkala, H. Wilczyński, Markus Lauscher, J. Phuntsok, Markus Roth, H. J. Mathes, Pavel Horvath, L. del Peral, D. LaHurd, M. Palatka, Günter Sigl, G. De Mauro, Martin Erdmann, I. Valiño, Gioacchino Alex Anastasi, Andrej Dundovic, Lorenzo Caccianiga, Maria Rita Coluccia, V. M. Theodoro, Roger W Clay, I. Lhenry-Yvon, Stefano D'Amico, M. I. Micheletti, G. Matthiae, A. N. Yushkov, Antonio Bueno, M. Josebachuili, J. Neuser, Johannes Schulz, R. Engel, K.-H. Becker, M. Pimenta, G. S. Varner, B. Mitrica, Heino Falcke, Sofia Andringa, Valerio Verzi, J. Hulsman, J. Vicha, A. Valbuena-Delgado, Lenka Tomankova, Dariusz Glas, J. Rodriguez Rojo, A. Tepe, Florian Lukas Briechle, A. G. Chavez, Gualberto Avila, Brian Fick, Enrique Zas, Jose Chinellato, B. Tome, Benedikt Zimmermann, Luca Latronico, Pascal Lautridou, A. C. Fauth, Angela V. Olinto, A. Letessier-Selvon, Lorenzo Cazon, C. Di Giulio, Fernando Contreras, Darko Veberic, Alberto Filevich, Bruno Daniel, Carla Bonifazi, Jose A. Bellido, A. van Vliet, Foteini Oikonomou, J. J. Masías Meza, T. Paul, R. Pelayo, G. Salina, Olivier Deligny, S. Querchfeld, S. Sonntag, Francesco Strafella, J. A. Matthews, Jaime Rosado, Ugo Giaccari, R. Cester, A. Cancio, Ioana Codrina Maris, Nicusor Arsene, P. Privitera, A. Tapia, F. Guarino, Peter Buchholz, Jesús Peña-Rodríguez, Ricardo Vázquez, G. C. Hill, Takahiro Fujii, I.M. Brancus, H. Gemmeke, M. Unger, A. Dorofeev, J. Ridky, Igor Katkov, H. Glass, Marco Aglietta, L. Villaseñor, Lukas Middendorf, Christine Peters, G. Rodriguez Fernandez, Daniela Mockler, J. W. Cronin, P. van Bodegom, Nataliia Borodai, S. J. De Jong, Gregory R. Snow, Pierre Billoir, J. R. T. de Mello Neto, Xavier Bertou, A. Zepeda, Pedro Assis, A. Etchegoyen, A. Gorgi, L. Perrone, D. Torres Machado, D. Nosek, A.M. van den Berg, Thomas Harrison, P. Pieroni, F. Arqueros, A. Weindl, H. Nožka, M. Schauer, G. Kukec Mezek, P. H. Hansen, Carla Bleve, Belén Andrada, G. Golup, N. Kunka, D. Heck, D. Yelos, Peter Gorham, M. L. Díaz Castro, L. Collica, Martina Bohacova, Patrick Allison, G. Farrar, C. Hojvat, Jan Ebr, A. Menshikov, Luis A. Anchordoqui, J. Sorokin, L.A.S. Pereira, A. Di Matteo, Francesca Zuccarello, Petr Travnicek, Rodríguez-Frías, Alan Coleman, Raul Sarmento, Trent D. Grubb, H.O. Klages, B. Wundheiler, R. Rebolo Lopez, P. H. Kasper, Juan Manuel Figueira, Frank G. Schröder, Marco Torri, Roberta Colalillo, A. G. Mariazzi, S. Messina, V. Novotny, Rossella Caruso, A. Lucero, S. Mathys, M. Erfani, J. Kleinfeller, A. Tonachini, Daniel Kuempel, Carlos Escobar, P.F. Gómez Vitale, P. Abreu, D. Ravignani, C. J.W.P. Timmermans, Ivone F. M. Albuquerque, Ke Fang, Marcus Niechciol, A.D. Supanitsky, Sutherland, R. M. Kieckhafer, J. Rautenberg, Kai Daumiller, O. Wainberg, Richard Dallier, Francisco Pedreira, Thomas Bretz, Corbin Covault, Matías Rolf Hampel, S. Navas, Lino Miramonti, Joshua A. Gordon, Gaia Silli, F. Sanchez, F. Sarazin, K. H. Kampert, S. Petrera, Leigui de Oliveira, J. F. Valdés Galicia, A. Hervé, B. Revenu, I. De Mitri, J. R. Vázquez, M. Platino, T. Huege, Hernán Gonzalo Asorey, A. Parra, P. Sanchez-Lucas, D. Harari, G. Müller, Ivo Nicolas Naranjo, Alina Mihaela Badescu, M. Prouza, Jeffrey Brack, M. Risse, Olaf Scholten, Jonathan Blazek, A. Schulz, Humberto Ibarguen Salazar, G. Parente, Fabrizia Canfora, Miguel Mostafa, R. Legumina, D. Garcia-Pinto, G. Marsella, A. López Casado, D. Rogozin, J. de Oliveira, Samo Stanič, Quentin Luce, Alex Kääpä, F. Suarez, Thomas Hebbeker, Sergio Dasso, Tristan Sudholz, Colin Baus, Martín Miguel Freire, M. Weber, Octavian Sima, V. Pirronello, H. Schieler, Antonella Castellina, G. P. Guedes, Jorn Schumacher, J. Debatin, A. Shadkam, A. F. Grillo, Juan Carlos D'Olivo, T. Pierog, P. L. Ghia, David Schmidt, Michael Urban, I. Al Samarai, Jeffrey A. Johnsen, S. Quinn, A. Segreto, Florian Gaté, V. de Souza, Eun-Joo Ahn, François Montanet, L. Caramete, Christian Sarmiento-Cano, L. Nellen, C. Morello, Peter L. Biermann, A. M. Kuotb Awad, J. A. J. Matthews, Paula Gina Isar, F. Salesa Greus, Nicolás González, Esteban Roulet, Corinne Berat, M. Giller, Q. Hasankiadeh, Z. Zong, B. Gookin, E. M. Santos, Bruce R. Dawson, P.O. Mazur, L. Niemietz, Tim Niggemann, J. Stasielak, S. Coutu, C. Porowski, Denise Boncioli, A. Aab, J. Biteau, Luis A. Nunez, Elton J. G. Santos, and K. Link
- Subjects
Physics ,Pierre Auger Observatory ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,FOS: Physical sciences ,Généralités ,Astrophysics ,01 natural sciences ,Auger ,Interpretation (model theory) ,Acceleration ,Physics and Astronomy (all) ,Observatory ,0103 physical sciences ,Energy spectrum ,Mass spectrum ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics - Abstract
We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 EeV, i.e. the region of the all-particle spectrum above the so-called "ankle"' feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated with a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies and hard spectral indices. The impact of various systematic uncertainties on the above result is discussed., 0, SCOPUS: cp.p, info:eu-repo/semantics/published
- Published
- 2017
- Full Text
- View/download PDF
43. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory
- Author
-
Marco Torri, Denis Stanca, P. Abreu, D. Ravignani, M. Platino, M. Urban, A. C. Rovero, Alexandru Balaceanu, Vincenzo Rizi, D. Martello, M. Ziolkowski, Silvia Mollerach, O. Martínez Bravo, I. Jandt, Ralf Ulrich, R. Piegaia, G. Cataldi, V. Scherini, C. J. Todero Peixoto, N. Krohm, Alexandra Saftoiu, B. Sarkar, Christian Glaser, J. Espadanal, H. Wilczyński, B. García, Tobias Winchen, P. Lebrun, R. López, Karen S. Caballero-Mora, Alberto Daniel Supanitsky, Jose Chinellato, J. Kleinfeller, J. D. Swain, Martin Erdmann, E. Santos, Daniel Kuempel, Carlos Escobar, G. Torralba Elipe, Markus Roth, A. Letessier-Selvon, Gioacchino Alex Anastasi, Jesús Peña-Rodríguez, R. Krause, A. Śmiałkowski, Roger W Clay, D. Melo, P. Ruehl, A. Insolia, M. Kleifges, D. Zavrtanik, Stefano D'Amico, Lorenzo Cazon, A. Fuster, A. C. Fauth, Carla Bonifazi, Jose A. Bellido, S. Sonntag, J. J. Beatty, J. Pȩkala, L. Valore, I.D. Vergara Quispe, Mariangela Settimo, L. Nellen, N. Fazzini, Jeffrey A. Johnsen, B. Vargas Cárdenas, T. Suomijärvi, J. Pallotta, E. J. Quel, A. van Vliet, Max Malacari, Lili Yang, Thomas Bretz, I. Valiño, C. Morello, J. Neuser, Corbin Covault, M. Zavrtanik, Piotr Homola, Julien Aublin, M. Josebachuili, David Walz, Ivone F. M. Albuquerque, M. Suarez Durán, Matías Rolf Hampel, Gaia Silli, A. Filipčič, R. M. Kieckhafer, David Wittkowski, Hernan Wahlberg, G. Salina, Igor Katkov, Eric Mayotte, M. Gómez Berisso, M. I. Micheletti, R. R. Prado, J. Rautenberg, Danielle LaHurd, Olivier Deligny, A. Parra, O. Wainberg, P. Ristori, Peter L. Biermann, M. Trini, S. Quinn, G. Kukec Mezek, Lino Miramonti, F. Sarazin, R. C. Shellard, A. Cancio, E. Varela, I. Allekotte, Dusan Mandat, Johannes Schulz, K.-H. Becker, M. Pimenta, J.D. Sanabria Gomez, Paolo Privitera, L. Villaseñor, S. Petrera, J. F. Valdés Galicia, Brian Fick, Marc Weber, Michael Unger, Francesco Strafella, I. De Mitri, Mario Buscemi, A. Segreto, Günter Sigl, Benedikt Zimmermann, Rúben Conceição, P. Heimann, Florian Lukas Briechle, J. Hulsman, A. Menshikov, Z. Zong, Petr Schovanek, A. Aab, Julian Kemp, G. Matthiae, M. A. Leigui de Oliveira, Roberto Mussa, D. Pakk Selmi-Dei, E. Kemp, R. Sato, Marco Giammarchi, L. Caramete, Serguei Vorobiov, J. R. Vázquez, D. Torres Machado, Alex Kääpä, Antonio Bueno, P. Sanchez-Lucas, D. Harari, D. Garcia-Pinto, Colin Baus, O. A. Taborda, Lourenco Lopes, Paul Sommers, A. Blanco, François Montanet, R. Squartini, G. S. Varner, T. Paul, Alfred Müller, L. Ochilo, P. Gouffon, H. Schieler, M. J. Cooper, H. Martinez, Carla Bleve, Karl-Heinz Kampert, F. Sánchez, Belén Andrada, Carlos Medina, Federico Suarez, Ricardo Vázquez, Ivo Nicolas Naranjo, Antonella Castellina, Paula Gina Isar, F. Salesa Greus, Gualberto Avila, M. Risse, Jonathan Blazek, G. C. Hill, Alina Mihaela Badescu, Radomir Smida, G. Medina-Tanco, G. van Aar, A. Di Matteo, Maria Rita Coluccia, Bruno Daniel, I. C. Mariç, Ralph Engel, M. Mallamaci, B. Wundheiler, Foteini Oikonomou, J. J. Masías Meza, G. De Mauro, C. Aramo, Gregory R Snow, P. H. Kasper, Jonathan Biteau, M. Prouza, Nicolás González, A.M. van den Berg, Darko Veberič, J. Ridky, Angela V. Olinto, Jörg R. Hörandel, B. Mitrica, S. Müller, Heino Falcke, E.M. Holt, Nicusor Arsene, A. Tapia, G. Parente, Fabrizia Canfora, R. Legumina, Esteban Roulet, H. Gemmeke, J. Vicha, I. Lhenry-Yvon, Corinne Berat, M. Giller, G. Marsella, A. Saleh, Maria-Teresa Dova, Q. Hasankiadeh, M. Perlin, D. Rogozin, J. de Oliveira, P. H. Nguyen, D. Nosek, C. Hojvat, Jan Ebr, R.J. Barreira Luz, E. M. Santos, Alejandro Almela, H.O. Klages, Bruce R. Dawson, P.O. Mazur, S. Messina, Johannes Schumacher, Andrej Dundovic, Lorenzo Caccianiga, V. M. Theodoro, Octavian Fratu, Valerio Verzi, B. Tome, G. Müller, Dariusz Glas, R.C. dos Anjos, V. de Souza, M. Palatka, A. Bridgeman, Luis A. Nunez, J. Stasielak, S. Coutu, S. J. Saffi, C. Porowski, Denise Boncioli, Marcus Niechciol, S. Querchfeld, M. J. Roncoroni, L. Niemietz, M. L. Díaz Castro, G. Farrar, Francesca Zuccarello, Tim Niggemann, I. Al Samarai, A. Criss, L. A. S. Pereira, Q. Luce, A. Taboada, G. P. Guedes, P.F. Gómez Vitale, Toshihiro Fujii, J. Debatin, A. Shadkam, Markus Lauscher, A. F. Grillo, Juan Carlos D'Olivo, T. Pierog, F. Pedreira, J. Phuntsok, Piera Luisa Ghia, Raul Sarmento, H. J. Mathes, A. Weindl, P. Stassi, David Schmidt, J. Rodriguez Rojo, A. G. Chavez, F.G. Schröder, Enrique Zas, Octavian Sima, C. Di Giulio, Fernando Contreras, M. Schauer, B. Revenu, D. Heck, Peter Gorham, Charles Timmermans, L. Collica, T. Huege, Jeffrey Brack, Olaf Scholten, Humberto Ibarguen Salazar, C. A. Sarmiento, F. Gate, Peter Hansen, Miguel Mostafa, L. Perrone, Jiri Chudoba, L. Tomankova, Alessio Gorgi, F. Guarino, John Matthews, A. López Casado, Samo Stanič, Peter Buchholz, R. Gaior, I.M. Brancus, Thomas Hebbeker, Sergio Dasso, Tristan Sudholz, Thomas Harrison, H. Glass, Martín Miguel Freire, Carola Dobrigkeit, M. Plum, V. Pirronello, Marco Aglietta, P. Pieroni, M. E. Bertaina, F. Arqueros, Alan Watson, Kai Daumiller, Martina Bohacova, Mihai Niculescu-Oglinzanu, J. Alvarez Castillo, K. Link, J. Sorokin, A. Lucero, Miroslav Hrabovský, O. Kambeitz, M. Schimp, A. Haungs, A. Kuotb Awad, J. L. Harton, S. G. Blaess, P. Mantsch, Z. Szadkowski, Ana Martina Botti, F. Diogo, V. Novotny, Rossella Caruso, S. Mathys, M. Erfani, R. M. de Almeida, Lukas Middendorf, Christine Peters, Miroslav Pech, A. Yushkov, Rodrigo Pelayo, Stijn Buitink, Pavel Horvath, D. Yelos, G. Rodriguez Fernandez, Hernán Asorey, R. Ramos-Pollan, Sofia Andringa, Marcio Aparecido Muller, H. Nožka, Daniela Mockler, W. Rodrigues de Carvalho, J. W. Cronin, P. van Bodegom, G. Golup, Nataliia Borodai, N. Kunka, S. J. De Jong, Pierre Billoir, Ugo Giaccari, J. R. T. de Mello Neto, J. A.J. Matthews, Xavier Bertou, A. Zepeda, Pedro Assis, A. Etchegoyen, Luis A. Anchordoqui, Jaime Alvarez-Muñiz, Philipp Papenbreer, Alexandru Gherghel-Lascu, Petr Travnicek, Alan Coleman, Trent D. Grubb, Juan Manuel Figueira, Roberta Colalillo, A. G. Mariazzi, I. A. Minaya, B. Keilhauer, André Schulz, S. J. Sciutto, D. Nitz, A. E. Herve, L. R. Wiencke, S. Jansen, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire SUBATECH Nantes (SUBATECH), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Pierre AUGER, Aab, A., Abreu, P., Aglietta, M., Samarai, I. Al, Albuquerque, I. F. M., Allekotte, I., Almela, A., Castillo, J. Alvarez, Alvarez Muñiz, J., Anastasi, G. A., Anchordoqui, L., Andrada, B., Andringa, S., Aramo, C., Arqueros, F., Arsene, N., Asorey, H., Assis, P., Aublin, J., Avila, G., Badescu, A. M., Balaceanu, A., Luz, R. J. Barreira, Baus, C., Beatty, J. J., Becker, K. H., Bellido, J. A., Berat, C., Bertaina, M. E., Bertou, X., Biermann, P. L., Billoir, P., Biteau, J., Blaess, S. G., Blanco, A., Blazek, J., Bleve, C., Boháčová, M., Boncioli, D., Bonifazi, C., Borodai, N., Botti, A. M., Brack, J., Brancus, I., Bretz, T., Bridgeman, A., Briechle, F. L., Buchholz, P., Bueno, A., Buitink, S., Buscemi, M., Caballero Mora, K. S., Caccianiga, L., Cancio, A., Canfora, F., Caramete, L., Caruso, R., Castellina, A., Cataldi, G., Cazon, L., Chavez, A. G., Chinellato, J. A., Chudoba, J., Clay, R. W., Colalillo, Roberta, Coleman, A., Collica, L., Coluccia, M. R., Conceição, R., Contreras, F., Cooper, M. J., Coutu, S., Covault, C. E., Criss, A., Cronin, J., D'Amico, S., Daniel, B., Dasso, S., Daumiller, K., Dawson, B. R., de Almeida, R. M., de Jong, S. J., Mauro, G. De, Neto, J. R. T. de Mello, Mitri, I. De, de Oliveira, J., de Souza, V., Debatin, J., Deligny, O., Giulio, C. Di, Matteo, A. Di, Castro, M. L. Díaz, Diogo, F., Dobrigkeit, C., D'Olivo, J. C., Anjos, R. C. do, Dova, M. T., Dundovic, A., Ebr, J., Engel, R., Erdmann, M., Erfani, M., Escobar, C. O., Espadanal, J., Etchegoyen, A., Falcke, H., Farrar, G., Fauth, A. C., Fazzini, N., Fick, B., Figueira, J. M., Filipčič, A., Fratu, O., Freire, M. M., Fujii, T., Fuster, A., Gaior, R., García, B., Garcia Pinto, D., Gaté, F., Gemmeke, H., Gherghel Lascu, A., Ghia, P. L., Giaccari, U., Giammarchi, M., Giller, M., Głas, D., Glaser, C., Glass, H., Golup, G., Berisso, M. Gómez, Vitale, P. F. Gómez, González, N., Gorgi, A., Gorham, P., Gouffon, P., Grillo, A. F., Grubb, T. D., Guarino, Fausto, Guedes, G. P., Hampel, M. R., Hansen, P., Harari, D., Harrison, T. A., Harton, J. L., Hasankiadeh, Q., Haungs, A., Hebbeker, T., Heck, D., Heimann, P., Herve, A. E., Hill, G. C., Hojvat, C., Holt, E., Homola, P., Hörandel, J. R., Horvath, P., Hrabovský, M., Huege, T., Hulsman, J., Insolia, A., Isar, P. G., Jandt, I., Jansen, S., Johnsen, J. A., Josebachuili, M., Kääpä, A., Kambeitz, O., Kampert, K. H., Kasper, P., Katkov, I., Keilhauer, B., Kemp, E., Kemp, J., Kieckhafer, R. M., Klages, H. O., Kleifges, M., Kleinfeller, J., Krause, R., Krohm, N., Kuempel, D., Mezek, G. Kukec, Kunka, N., Awad, A. Kuotb, Lahurd, D., Lauscher, M., Lebrun, P., Legumina, R., de Oliveira, M. A. Leigui, Letessier Selvon, A., Lhenry Yvon, I., Link, K., Lopes, L., López, R., Casado, A. López, Luce, Q., Lucero, A., Malacari, M., Mallamaci, M., Mandat, D., Mantsch, P., Mariazzi, A. G., Mariç, I. C., Marsella, G., Martello, D., Martinez, H., Bravo, O. Martínez, Meza, J. J. Masía, Mathes, H. J., Mathys, S., Matthews, J., Matthews, J. A. J., Matthiae, G., Mayotte, E., Mazur, P. O., Medina, C., Medina Tanco, G., Melo, D., Menshikov, A., Messina, S., Micheletti, M. I., Middendorf, L., Minaya, I. A., Miramonti, L., Mitrica, B., Mockler, D., Mollerach, S., Montanet, F., Morello, C., Mostafá, M., Müller, A. L., Müller, G., Muller, M. A., Müller, S., Mussa, R., Naranjo, I., Nellen, L., Neuser, J., Nguyen, P. H., Niculescu Oglinzanu, M., Niechciol, M., Niemietz, L., Niggemann, T., Nitz, D., Nosek, D., Novotny, V., Nožka, H., Núñez, L. A., Ochilo, L., Oikonomou, F., Olinto, A., Selmi Dei, D. Pakk, Palatka, M., Pallotta, J., Papenbreer, P., Parente, G., Parra, A., Paul, T., Pech, M., Pedreira, F., Pȩkala, J., Pelayo, R., Peña Rodriguez, J., Pereira, L. A. S., Perlín, M., Perrone, L., Peters, C., Petrera, S., Phuntsok, J., Piegaia, R., Pierog, T., Pieroni, P., Pimenta, M., Pirronello, V., Platino, M., Plum, M., Porowski, C., Prado, R. R., Privitera, P., Prouza, M., Quel, E. J., Querchfeld, S., Quinn, S., Ramos Pollan, R., Rautenberg, J., Ravignani, D., Revenu, B., Ridky, J., Risse, M., Ristori, P., Rizi, V., de Carvalho, W. Rodrigue, Fernandez, G. Rodriguez, Rojo, J. Rodriguez, Rogozin, D., Roncoroni, M. J., Roth, M., Roulet, E., Rovero, A. C., Ruehl, P., Saffi, S. J., Saftoiu, A., Salazar, H., Saleh, A., Greus, F. Salesa, Salina, G., Gomez, J. D. Sanabria, Sánchez, F., Sanchez Lucas, P., Santos, E. M., Santos, E., Sarazin, F., Sarkar, B., Sarmento, R., Sarmiento, C. A., Sato, R., Schauer, M., Scherini, V., Schieler, H., Schimp, M., Schmidt, D., Scholten, O., Schovánek, P., Schröder, F. G., Schulz, A., Schulz, J., Schumacher, J., Sciutto, S. J., Segreto, A., Settimo, M., Shadkam, A., Shellard, R. C., Sigl, G., Silli, G., Sima, O., Śmiałkowski, A., Šmída, R., Snow, G. R., Sommers, P., Sonntag, S., Sorokin, J., Squartini, R., Stanca, D., Stanič, S., Stasielak, J., Stassi, P., Strafella, F., Suarez, F., Durán, M. Suarez, Sudholz, T., Suomijärvi, T., Supanitsky, A. D., Swain, J., Szadkowski, Z., Taboada, A., Taborda, O. A., Tapia, A., Theodoro, V. M., Timmermans, C., Peixoto, C. J. Todero, Tomankova, L., Tomé, B., Elipe, G. Torralba, Machado, D. Torre, Torri, M., Travnicek, P., Trini, M., Ulrich, R., Unger, M., Urban, M., Galicia, J. F. Valdé, Valiño, I., Valore, Laura, Aar, G. van, Bodegom, P. van, Berg, A. M. van den, Vliet, A. van, Varela, E., Cárdenas, B. Varga, Varner, G., Vázquez, J. R., Vázquez, R. A., Veberič, D., Quispe, I. D. Vergara, Verzi, V., Vicha, J., Villaseñor, L., Vorobiov, S., Wahlberg, H., Wainberg, O., Walz, D., Watson, A. A., Weber, M., Weindl, A., Wiencke, L., Wilczyński, H., Winchen, T., Wittkowski, D., Wundheiler, B., Yang, L., Yelos, D., Yushkov, A., Zas, E., Zavrtanik, D., Zavrtanik, M., Zepeda, A., Zimmermann, B., Ziolkowski, M., Zong, Z., Zuccarello, F., Bleve, Carla, Colalillo, R., Coluccia, MARIA RITA, D'Amico, Stefano, DE MITRI, Ivan, Guarino, F., Marsella, Giovanni, Martello, Daniele, Perrone, Lorenzo, Strafella, Francesco, Valore, L., Physics, Elementary Particle Physics, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes)
- Subjects
[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Cherenkov detectors ,Data analysis ,Large detector systems for particle and astroparticle physics ,Systematic effects ,FOS: Physical sciences ,Cosmic ray ,Cherenkov detectors Data analysis ,Instrumentation ,Mathematical Physics ,01 natural sciences ,Auger ,Nuclear physics ,Observatory ,0103 physical sciences ,Density of air ,High Energy Physics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics::Atmospheric and Oceanic Physics ,Pierre Auger Observatory ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Física ,13. Climate action ,Experimental High Energy Physics ,RECONHECIMENTO DE PADRÕES ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Física nuclear ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Event (particle physics) ,ultra-high energy cosmic rays, extensive air showers, atmospheric effects ,Energy (signal processing) - Abstract
Atmospheric conditions, such as the pressure (P), temperature (T) or air density ( / P=T), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500m and the one with 750m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. We show how the energy assignment can be corrected to account for such atmospheric effects., La lista completa de autores puede verse al final del archivo asociado a este registro., Instituto de Física La Plata
- Published
- 2017
- Full Text
- View/download PDF
44. Searching for neutrino radio flashes from the Moon with LOFAR
- Author
-
Stijn Buitink, Arthur Corstanje, Emilio Enriquez, Heino Falcke, Wilfred Frieswijk, Jörg Hörandel, Maaijke Mevius, Anna Nelles, Satyendra Thoudam, Pim Schellart, Olaf Scholten, Sander ter Veen, Martin van den Akker, null LOFAR Collaboration, and KVI - Center for Advanced Radiation Technology
- Subjects
010504 meteorology & atmospheric sciences ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Askaryan effect ,Radio telescope ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,0105 earth and related environmental sciences ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,COSMIC cancer database ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Digital radio ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Ultra-high-energy neutrinos and cosmic rays produce short radio flashes through the Askaryan effect when they impact on the Moon. Earthbound radio telescopes can search the Lunar surface for these signals. A new generation of low- frequency, digital radio arrays, spearheaded by LOFAR, will allow for searches with unprecedented sensitivity. In the first stage of the NuMoon project, low-frequency observations were carried out with the Westerbork Synthesis Radio Telescope, leading to the most stringent limit on the cosmic neutrino flux above 10$^{23}$ eV. With LOFAR we will be able to reach a sensitivity of over an order of magnitude better and to decrease the threshold energy., Comment: Proceedings of the ARENA 2012 workshop (Erlangen, Germany), AIP Conference Proceedings, to be published
- Published
- 2013
- Full Text
- View/download PDF
45. Xmax reconstruction based on radio detection of air showers
- Author
-
Arthur Corstanje, T. Huege, Olaf Scholten, Satyendra Thoudam, A. Nelles, Jörg P. Rachen, Pim Schellart, Jörg R. Hörandel, S. ter Veen, T. N. G. Trinh, Heino Falcke, Laura Rossetto, Stijn Buitink, J. E. Enriquez, and Research unit Astroparticle Physics
- Subjects
Physics ,Optics ,Distribution function ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,LOFAR ,Radiation ,business ,Radio detection - Abstract
The radio emission from air showers is used to accurately reconstruct the depth of the shower maximum (Xmax). We present a method based on using the full two-dimensional radiation profile as observed on the ground. While the density of shower particles reaching the ground is usually described with a 1D lateral distribution function, the intensity of the radio pulse is a complex function of observer position with respect to the shower axis. The CoREAS code simulates these complicated patterns to very high precision. When the antenna density is sufficiently high, like for example in the LOFAR core, the 2D approach leads to a resolution on Xmax of < 20 g/cm2. This is the same level of accuracy that is achieved with fluorescence detection.
- Published
- 2016
- Full Text
- View/download PDF
46. Polarization and radio wavefront of air showers as measured with LOFAR
- Author
-
Heino Falcke, Olaf Scholten, Satyendra Thoudam, Pim Schellart, S. ter Veen, J. P. Rachen, Gia Trinh, Emilio Enriquez, Arthur Corstanje, A. Nelles, J. R. Hoerandel, Stijn Buitink, Laura Rossetto, and Research unit Astroparticle Physics
- Subjects
Wavefront ,Physics ,Optics ,business.industry ,LOFAR ,business ,Polarization (waves) - Published
- 2016
- Full Text
- View/download PDF
47. A study of the energy spectrum and composition of cosmic rays up to the highest energies
- Author
-
Heino Falcke, Jörg P. Rachen, Jörg R. Hörandel, Abraham Achterberg, Stijn Buitink, and Satyendra Thoudam
- Subjects
Interstellar medium ,Physics ,Supernova ,Air shower ,Astrophysics::High Energy Astrophysical Phenomena ,Energy spectrum ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Spectral line ,Energy (signal processing) - Abstract
Motivated by the recent high-precision measurements of the cosmic-ray energy spectrum and composition by several new-generation experiments, we have conducted a detailed study to understand the observed properties of cosmic rays up to ~10$^{18}$ eV. The study involves building a propagation model for cosmic rays originating from supernova explosions in the interstellar medium. Although these cosmic rays can satisfactorily explain the observed spectra of different elements at low energies provided by balloon and satellite borne experiments, we found that they cannot account for the cosmic rays above ~10$^{16}$ eV observed by air shower experiments. An additional component of Galactic cosmic rays is required in order to explain the observed cosmic rays beyond this energy up to ~10$^{18}$ eV. Possible scenarios for this additional component, and comparison with the observed all-particle spectrum and composition are presented.
- Published
- 2016
- Full Text
- View/download PDF
48. The cosmic-ray energy spectrum above $\sim 10^{16}$ eV measured with the LOFAR Radboud Air Shower Array
- Author
-
A. Nelles, Olaf Scholten, Emilio Enriquez, Jörg R. Hörandel, Satyendra Thoudam, Arthur Corstanje, L. V. Kessel, Heino Falcke, Gia Trinh, S. ter Veen, Laura Rossetto, Stijn Buitink, Pim Schellart, and J. P. Rachen
- Subjects
Physics ,Scintillation ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,LOFAR ,Astrophysics ,Atmosphere ,Radio telescope ,Shower ,Air shower ,Physics::Atmospheric and Oceanic Physics - Abstract
The LOFAR Radboud Air Shower Array (LORA) is an array of 20 plastic scintillation detectors installed in the center of the LOFAR radio telescope in the Netherlands to measure extensive air showers induced by cosmic rays in the Earth's atmosphere. The primary goals of LORA are to trigger the read-out of the LOFAR radio antennas to record radio signals from air showers, and to assist the reconstruction of air shower properties with LOFAR by providing basic air shower parameters, such as the position of the shower axis on the ground, the arrival direction and the energy of the incoming cosmic ray. In this paper, we describe the various steps involved in the energy reconstruction of air showers measured with LORA, and present the all-particle cosmicray energy spectrum above 1016 eV reconstructed for the two extreme scenarios: pure protons and iron nuclei.
- Published
- 2016
- Full Text
- View/download PDF
49. Probing atmospheric electric fields in thunderstorms through radio emission from extensive air showers
- Author
-
Olaf Scholten, A. Nelles, J. E. Enriquez, Stijn Buitink, Arthur Corstanje, Heino Falcke, A.M. van den Berg, Jörg P. Rachen, Jörg R. Hörandel, T. N. G. Trinh, Pim Schellart, Ute Ebert, S. ter Veen, Laura Rossetto, Satyendra Thoudam, and Casper Rutjes
- Subjects
Physics ,Air shower ,Meteorology ,Astrophysics::High Energy Astrophysical Phenomena ,Electric field ,Thunderstorm ,Polarization (waves) ,Physics::Atmospheric and Oceanic Physics - Abstract
We present measurements of radio emission from extensive air showers taking place during thunderstorms. Their intensity and polarization patterns are different from those observed during fair-weather conditions. We introduce a simple two-layer model for atmospheric electric fields which can reproduce the main features of the intensity and polarization patterns of air shower during thunderstorms. This in turn provides a unique way to probe atmospheric electric fields.
- Published
- 2016
- Full Text
- View/download PDF
50. The lunar Askaryan technique with the Square Kilometre Array
- Author
-
Jaime Alvarez-Muñiz, Ralph Spencer, S. ter Veen, Heino Falcke, R. L. Mutel, R. J. Protheroe, T. Huege, Maaijke Mevius, Olaf Scholten, Stijn Buitink, Ken Gayley, Ronald D. Ekers, Justin D. Bray, C. W. James, and R. D. Dagkesamanskii
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Flux ,Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,LOFAR ,Radio telescope ,Square kilometre array ,Neutrino ,Event (particle physics) ,Radio wave - Abstract
The lunar Askaryan technique is a method to study the highest-energy cosmic rays and their predicted counterparts, the ultra-high-energy neutrinos. By observing the Moon with a radio telescope, and searching for the characteristic nanosecond-scale Askaryan pulses emitted when a high-energy particle interacts in the outer layers of the Moon, the visible lunar surface can be used as a detection area. Several previous experiments, at Parkes, Goldstone, Kalyazin, Westerbork, the ATCA, Lovell, LOFAR, and the VLA, have developed the necessary techniques to search for these pulses, but existing instruments have lacked the necessary sensitivity to detect the known flux of cosmic rays from such a distance. This will change with the advent of the SKA. The Square Kilometre Array (SKA) will be the world's most powerful radio telescope. To be built in southern Africa, Australia and New Zealand during the next decade, it will have an unsurpassed sensitivity over the key 100 MHz to few-GHZ band. We introduce a planned experiment to use the SKA to observe the highest-energy cosmic rays and, potentially, neutrinos. The estimated event rate will be presented, along with the predicted energy and directional resolution. Prospects for directional studies with phase 1 of the SKA will be discussed, as will the major technical challenges to be overcome to make full use of this powerful instrument. Finally, we show how phase 2 of the SKA could provide a vast increase in the number of detected cosmic rays at the highest energies, and thus to provide new insight into their spectrum and origin.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.