1. Purification, characterization, and biodelignification potential of lignin peroxidase from immobilized Phanerochaete chrysosporium
- Author
-
Thammaiah Vandana, Samanta Ashish Kumar, Senani Swaraj, and Sridhar Manpal
- Subjects
Environmental Engineering ,Bioengineering ,Waste Management and Disposal - Abstract
Lignin peroxidase (LiP), which has been studied extensively in white-rot Basidiomycetes with regard to bio-pulping and bio-bleaching, plays a role in the biodegradation of plant cell wall lignin. In the current study, LiP obtained from a wild isolate of Phanerochaete chrysosporium immobilized on polyurethane foam cubes was purified 21-fold using ammonium sulphate precipitation and size exclusion chromatography. The enzyme with a molecular mass of 55 kDa exhibited a considerably higher pH tolerance and thermostability compared with the native enzyme. It showed a strong affinity for the substrate veratryl alcohol and had kinetic constant values of 142.86 µmol and 65 µM. Cysteine, sodium azide, mercaptoethanol, and silver nitrate inhibited the activity, while ethanol, EDTA, Cu2+, Mn+, Na+, and Fe2+ exhibited induction. Purified LiP completely decolorized (100%) bromo phenyl blue, bromothymol blue, and bromocresol green. The 96 and 72% degradation obtained with phenol and congo red was also higher compared to crude LiP. Treatment with LiP showed reduction in ADL as compared to untreated straws, with a maximum of 2.87 units obtained in JR followed by 2.66 units in PS. The digestibility of all straws increased, the response varying from a maximum of 21.27 units in PRM to a minimum of 12.32 units obtained in LM.
- Published
- 2019
- Full Text
- View/download PDF