1. Trajectorial hypocoercivity and application to control theory
- Author
-
Dietert, Helge, Hérau, Frédéric, Hutridurga, Harsha, Mouhot, Clément, Université Paris Cité (UPCité), Sorbonne Université (SU), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Indian Institute of Technology Bombay (IIT Bombay), University of Cambridge [UK] (CAM), ANR-18-CE40-0027,SingFlows,Ecoulements avec singularités : couches limites, filaments de vortex, interaction vague-structure(2018), and European Project: 279600,EC:FP7:ERC,ERC-2011-StG_20101014,MATKIT(2011)
- Subjects
Hypocoercivity ,Mathematics - Analysis of PDEs ,divergence inequality ,spectral gap ,kinetic theory ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,General Medicine ,Fokker-Planck ,controllability ,Bogovosiǐ operator ,Analysis of PDEs (math.AP) - Abstract
We present the quantitative method of the recent work arXiv:2209.09340 in a simple setting, together with a compactness argument that was not included in arXiv:2209.09340 and has interest per se. We are concerned with the exponential stabilization (spectral gap) for linear kinetic equations with degenerate thermalization, i.e. when the collision operator vanishes on parts of the spatial domain. The method in arXiv:2209.09340 covers both scattering and Fokker-Planck type operators, and deals with external potential and boundary conditions, but in these notes we present only its core argument and restrict ourselves to the kinetic Fokker-Planck in the periodic torus with unit velocities and a thermalization degeneracy. This equation is not covered by the previous results of Bernard and Salvarani (2013), Han-Kwan and L\'eautaud (2015), Evans and Moyano (arXiv:1907.12836)., Comment: 10 pages, 1 figure
- Published
- 2022