1. Spatiotemporal Evolution of Urban Agglomeration and Its Impact on Landscape Patterns in the Pearl River Delta, China
- Author
-
Jiong Wu, Caiyan Wu, Qi Zhang, Minghao Zhuang, Huirong Xiao, Hui Wu, Linke Ouyang, Yuhan Liu, Chen Meng, Conghe Song, Dagmar Haase, and Junxiang Li
- Subjects
urban agglomeration ,spatiotemporal evolution ,urban growth ,Pearl River Delta ,ddc:550 ,General Earth and Planetary Sciences ,landscape expansion index ,diffusion and coalescence hypothesis ,PRDUA ,550 Geowissenschaften - Abstract
An urban agglomeration is the engine of regional and national economic growth, but also causes many ecological and environmental issues that emerge from massive land changes. In this study, the spatiotemporal evolution of an urban agglomeration was quantified and its impacts on the urban and regional landscape patterns were evaluated. It showed that the urbanized land area of the Pearl River Delta Urban Agglomeration (PRDUA) in China nearly quadrupled, having linearly increased from 1819.8 km2 to 7092.2 km2 between 1985 and 2015. The average annual growth rate presented a bimodal wave-like pattern through time, indicating that the PRDUA has witnessed two rounds of the urbanization process. The growth modes (e.g., leapfrog, edge-expansion, infilling) were detected and they exhibited co-existing but alternating dominating patterns during urbanization, demonstrating that the spatiotemporal evolution of the urban development of the PRDUA follows the “spiral diffusion-coalescence” hypothesis. The morphology of the PRDUA presented an alternating dispersal-compact pattern over time. The city-level and regional-level landscape patterns changed synchronously with the spatiotemporal evolution of the PRDUA over time. The urbanization of the PRDUA increased both the complexity and aggregation of the landscape, but also resulted in an increasing fragmentation and decreasing connectivity of the natural landscape in the Pearl River Delta region. These findings are helpful for better understanding how urban agglomerations evolve and in providing insights for regional urban planning and sustainable land management. Natural Science Foundation of China National Key R&D Program of China China Postdoctoral Science Foundation Joint-PhD project of Shanghai Jiao Tong University and The University of Melbourne
- Published
- 2023
- Full Text
- View/download PDF