1. Study of Active and Break Spell Phenomena of Indian Summer Monsoon Using WRF Downscaled Data
- Author
-
Hari Prasad Dasari, Venkateswara Naidu Chennu, Vinay Kumar Prathipati, and Yesubabu Viswanadhapalli
- Subjects
Troposphere ,Geophysics ,Indian summer monsoon ,Geochemistry and Petrology ,Weather Research and Forecasting Model ,Climatology ,Environmental science ,Shamal ,Precipitation ,Monsoon ,African easterly jet ,Trade wind - Abstract
This study evaluates the performance of a dynamically downscaled Weather Research and Forecasting (WRF) model by capturing the characteristics of the interseasonal variability in terms of active and break spells of the Indian summer monsoon during the period 1980–2014. We identify the active and break days based on the standard criteria of previous studies. Further, the composite means in the rainfall and different rainfall events, along with the thermal and dynamical features associated with active and break spells, are analyzed and discussed. Our results clearly show that the WRF model reproduces the observed features of monsoon circulation in active spells such as the wider and intensified lower tropospheric winds, the presence of mid-tropospheric cyclonic circulation, and the dominance of strong upper-level tropical easterlies along with the high influx of moisture towards the Indian subcontinent. Even in the break spells, the WRF model effectively simulates the observed features of the ERA, such as weaker monsoon winds at both low and upper levels and decreased strength of northwesterly winds of Shamal, the presence of a strong thermal inversion over the northwestern part of the Arabian Sea, and a significant increase in the African easterly jet. Moreover, our rainfall analysis during active and break spells reveals that the WRF model accurately reproduces the observed characteristics of the regional-scale precipitation. The results also reveal that the spatial distributions of moderate, heavy, and very heavy rainfall events over the monsoon core region are well captured by the WRF model, with only slight intensity variations compared to the observed distributions.
- Published
- 2021
- Full Text
- View/download PDF