As video traffic dominates the Internet, it is important for operators to detect video Quality of Experience (QoE) in order to ensure adequate support for video traffic. With wide deployment of end-to-end encryption, traditional deep packet inspection based traffic monitoring approaches are becoming ineffective. This poses a challenge for network operators to monitor user QoE and improve upon their experience. To resolve this issue, we develop and present a system for REal-time QUality of experience metric detection for Encrypted Traffic, Requet. Requet uses a detection algorithm we develop to identify video and audio chunks from the IP headers of encrypted traffic. Features extracted from the chunk statistics are used as input to a Machine Learning (ML) algorithm to predict QoE metrics, specifically, buffer warning (low buffer, high buffer), video state (buffer increase, buffer decay, steady, stall), and video resolution. We collect a large YouTube dataset consisting of diverse video assets delivered over various WiFi network conditions to evaluate the performance. We compare Requet with a baseline system based on previous work and show that Requet outperforms the baseline system in accuracy of predicting buffer low warning, video state, and video resolution by 1.12X, 1.53X, and 3.14X, respectively.