1. Suboptimal sensor subset evaluation in a P300 brain-computer interface
- Author
-
Cecotti, H., Rivet, B., Congedo, M., Jutten, C., Olivier BERTRAND, Maby, E., Mattout, J., Cecotti, Hubert, TecSan : Technologies pour la santé et l’autonomie - Interface Cerveau Ordinateur robuste pour clavier virtuel - - RoBIK2009 - ANR-09-TECS-0013 - TecSan - VALID, EURASIP, GIPSA - Vision and Brain Signal Processing (GIPSA-VIBS), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Dynamique Cérébrale et Cognition, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), ANR-09-TECS-0013,RoBIK,Interface Cerveau Ordinateur robuste pour clavier virtuel(2009), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), and Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Brain-Computer Interface ,P300 speller ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,sensor selection ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,[SCCO.NEUR]Cognitive science/Neuroscience ,[SCCO.NEUR] Cognitive science/Neuroscience ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,BCI ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
5 pages; International audience; A Brain-Computer Interface (BCI) is a specific type of human-computer interface that enables the direct communication between human and computers by analyzing brain activity. Oddball paradigms are used in BCI to generate event-related potentials (ERPs), like the P300 wave, on targets selected by the user. This paper deals with the choice of a reduced set of sensors for the P300 speller. A low number of sensors allows decreasing the time for preparing the subject, the cost of a BCI and the P300 classifier performance. A new algorithm to select relevant sensors is proposed, it is based on the backward elimination with a cost function related to the signal to signal-plus-noise ratio. This cost function offers better performance and avoids further mining evaluations related to the P300 recognition rate or the character recognition rate of the speller. The proposed method is tested on data recorded on 20 subjects.