1. The LoCA Regret: A Consistent Metric to Evaluate Model-Based Behavior in Reinforcement Learning
- Author
-
van Seijen, Harm, Nekoei, Hadi, Racah, Evan, and Chandar, Sarath
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Statistics - Machine Learning ,Machine Learning (stat.ML) ,Machine Learning (cs.LG) - Abstract
Deep model-based Reinforcement Learning (RL) has the potential to substantially improve the sample-efficiency of deep RL. While various challenges have long held it back, a number of papers have recently come out reporting success with deep model-based methods. This is a great development, but the lack of a consistent metric to evaluate such methods makes it difficult to compare various approaches. For example, the common single-task sample-efficiency metric conflates improvements due to model-based learning with various other aspects, such as representation learning, making it difficult to assess true progress on model-based RL. To address this, we introduce an experimental setup to evaluate model-based behavior of RL methods, inspired by work from neuroscience on detecting model-based behavior in humans and animals. Our metric based on this setup, the Local Change Adaptation (LoCA) regret, measures how quickly an RL method adapts to a local change in the environment. Our metric can identify model-based behavior, even if the method uses a poor representation and provides insight in how close a method's behavior is from optimal model-based behavior. We use our setup to evaluate the model-based behavior of MuZero on a variation of the classic Mountain Car task., Comment: NeurIPS 2020, code: https://github.com/chandar-lab/LoCA
- Published
- 2020
- Full Text
- View/download PDF