1. Semantic Segmentation Post-processing with Colorized Pairwise Potentials and Deep Edges
- Author
-
Laure Tougne, Elodie Faure, Rémi Ratajczak, Carlos Crispim, Béatrice Fervers, Extraction de Caractéristiques et Identification (imagine), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Département cancer environnement (Centre Léon Bérard - Lyon), Centre Léon Bérard [Lyon], Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME), LABEX IMU (ANR-10-LABX-0088/ ANR-11-IDEX-0007)., ADEME (N TEZ17-42), Centre Léon Bérard, IEEE, TESTIS, and IMU GOURAMIC
- Subjects
Conditional random field ,Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,0211 other engineering and technologies ,02 engineering and technology ,Grayscale ,Deep Edges ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Segmentation ,Deep Learning ,Land Use ,0202 electrical engineering, electronic engineering, information engineering ,021101 geological & geomatics engineering ,Pixel ,business.industry ,Deep learning ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Pattern recognition ,Object (computer science) ,[SDE.ES]Environmental Sciences/Environmental and Society ,Panchromatic film ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,020201 artificial intelligence & image processing ,Pairwise comparison ,Artificial intelligence ,business - Abstract
International audience; Semantic segmentation is the task of assigning a label to each pixel in an image, providing high level insights to a wide range of end-user applications like autonomous driving, medical imaging and land use mapping. However, semantic segmentation results are not always consistent with the object boundaries and may sometimes lack of spatial consistency. To solve these problems, post-processing algorithms have been proposed, paving the way for more robust pipelines. In this work, we study a novel post-processing approach to enhance semantic segmentation of panchromatic aerial images based on unsupervised colorization and deep edge superpixels. In particular, we propose to assess whether applying a colorization algorithm could enhance the strength of the pairwise potentials used in an extended dense conditional random field. We present experiments on recent aerial color images that we convert to grayscale before colorization, allowing us to assess how colorized representations impact post-processing when compared to real color and panchromatic representations.
- Published
- 2020