1. Additional file 1 of High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections – Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils
- Author
-
Aaltonen, Niina, Prosanta K. Singha, Jakupović, Hermina, Wirth, Thomas, Haritha Samaranayake, Pasonen-Seppänen, Sanna, Rilla, Kirsi, Varjosalo, Markku, Edgington-Mitchell, Laura E., Kasperkiewicz, Paulina, Drag, Marcin, Kälvälä, Sara, Moisio, Eemeli, Savinainen, Juha R., and Laitinen, Jarmo T.
- Abstract
Additional file 1 : Figure S1. Activity-based protein profiling (ABPP) and the power of this approach to unveil SH activity in glioma. Figure S2. Characteristics of the rat BT4C gliosarcoma model. Figure S3. Coronal plane MRI images of glioma and control brains. Figure S4. Testing various fixation method for rodent brain sections. Figure S5. Effect of TAMRA-FP concentration on fluorescence signal in mouse brain sections. Figure S6. Effects of pH and buffer composition on TAMRA-FP signal and its inhibitor sensitivity. Figure S7. Comparative gel-based ABPP of seven animals confirming distinct SH activity profiles between glioma and control brain. Figure S8. Confocal imaging of SH activity in relation to proliferating tumor cells. Figure S9. Confocal imaging of SH activity in relation to astrocytes. Figure S10. Confocal imaging of SH activity in relation to blood vessels. Figure S11. Confocal imaging of SH activity in relation to heme oxygenase 1 (HO-1). Figure S12. Confocal imaging of SH activity in relation to microglial marker Iba1. Figure S13. Confocal imaging of SH activity in relation to hyaluronan (HA). Figure S14. Confocal imaging of SH activity in relation to HA receptor CD44. Figure S15. Confocal imaging of SH activity in relation to the stiffness marker pMLC2. Figure S16. Confocal imaging of SH activity in relation to the stiffness marker tenascin C. Figure S17. Confocal imaging of SH activity in relation to CD45, a marker for nucleated hematopoietic cells. Figure S18. Confocal imaging of SH activity in relation to CD11b/c, a marker for phagocytes. Figure S19. Confocal imaging of SH activity in relation to CD68, a marker for monocytes and macrophages. Figure S20. Confocal imaging of SH activity in relation to CD163, a marker for monocytes and macrophages. Figure S21. Confocal imaging of SH activity in relation to CD169, a marker for macrophages. Figure S22. Confocal imaging of SH activity in relation to T cell marker CD4. Figure S23. Confocal imaging of SH activity in relation to T cell marker CD8. Figure S24. Confocal imaging of SH activity in relation to FcεRIγ, a marker for mast cells, eosinophils, basophils and monocytes. Figure S25. Confocal imaging of SH activity in relation to chymase (CMA1), a marker for mast cells. Figure S26. TAMRA-FP signal at the site of injection in sham-operated animals. Figure S27. Gel-ABPP of rat glioma proteomes using Cy5-labeled serine protease activity probes PK-DPP and V-DPP. Figure S28. Tissue-ABPP of glioma sections using Cy5-labeled activity probes PK-DPP and V-DPP. Figure S29. ABPP of rat neutrophil and glioma samples using Cy5-labeled neutrophil serine protease (NSP) probes in combination with TAMRA-FP. Figure S30. Inhibitor profiles of human cathepsin G (hCTSG) and the prominent 25–30 kDa SH bands in rat bone-marrow-derived mononuclear cells and neutrophils. Figure S31. High-resolution imaging of TAMRA-FP hotspots and their inhibitor sensitivity in rat spleen. Figure S32. Confocal imaging of SH activity in rat spleen sections in relation to selected immunomarkers. Figure S33. Tissue-ABPP offers sufficient sensitivity to enable imaging of TAMRA-FP fluorescence in regions of the healthy brain.
- Published
- 2020
- Full Text
- View/download PDF