1. Improving gross count gamma-ray logging in uranium mining with the NGRS probe
- Author
-
Carasco, C., Pérot, B., Ma, J.-L., Toubon, H., Dubille-Auchere, A., Lyoussi, A., CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), AREVA, Groupe AREVA, Laboratoire des Programmes Expérimentaux et d'Essais en Sûreté (LP2E), Service Physique EXpérimentale, d'essais en Sûreté et d'Instrumentation (SPESI), Département Etude des Réacteurs (DER), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Département Etude des Réacteurs (DER), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Mesures Nucléaires (LMN), Service Mesures et modélisation des Transferts et des Accidents graves (SMTA), Département Technologie Nucléaire (DTN), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Département Technologie Nucléaire (DTN)
- Subjects
Nuclear and High Energy Physics ,Materials science ,QC1-999 ,Nuclear engineering ,Monte Carlo method ,Analytical chemistry ,chemistry.chemical_element ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Scintillator ,010403 inorganic & nuclear chemistry ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,MCNP ,Calibration ,Sensitivity (control systems) ,Electrical and Electronic Engineering ,010308 nuclear & particles physics ,Physics ,Attenuation ,Gamma ray ,Uranium ,Uranium mining ,[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph] ,0104 chemical sciences ,NaI(Tl) scintillators ,Gamma ray logging ,Nuclear Energy and Engineering ,chemistry ,[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] ,Monte Carlo N-Particles ,Content (measure theory) ,Mass fraction - Abstract
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma-ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities, and compositions, a semiempirical formula was used to correct the calibration coefficient measured in Bessines facility. In this paper, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with Monte Carlo N-Particles (MCNP) computer code. The calibration coefficient determined by simulation 5.3 $\text{s}^{-1}\cdot \text {ppm}_{U}^{-1}$ with 10% accuracy is in good agreement with the one measured in Bessines (and for which no uncertainty was provided), 5.2 $\text{s}^{-1}\cdot \text {ppm}_{U}^{-1}$ . The calculations indicate that the concrete blocks used for measuring the calibration coefficients measured in Bessines are underestimated by about 10%. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50% uranium weight fraction. Parametric studies have also been performed with different tubing materials, diameters, and thicknesses, as well as different borehole filling fluids representative of real measurement conditions, in view to validate gamma attenuation corrections based on the semiempirical formula. In addition, a multilinear analysis approach has been tested to further improve accuracy on uranium concentration determination, leading to only a few percent uncertainties on a large range of configurations.
- Published
- 2018