1. Intruder configurations in $^{29}$Ne at the transition into the island of inversion: Detailed structure study of $^{28}$Ne
- Author
-
Wang, H., Yasuda, M., Kondo, Y., Nakamura, T., Tostevin, J. A., Ogata, K., Otsuka, T., Poves, A., Shimizu, N., Yoshida, K., Achouri, N. L., Falou, H. Al, Atar, L., Aumann, T., Baba, H., Boretzky, K., Caesar, C., Calvet, D., Chae, H., Chiga, N., Corsi, A., Crawford, H. L., Delaunay, F., Delbart, A., Deshayes, Q., Dombrádi, Zs., Douma, C., Elekes, Z., Fallon, P., Gašparić, I., Gheller, J. -M., Gibelin, J., Gillibert, A., Harakeh, M. N., Hirayama, A., Hoffman, C. R., Holl, M., Horvat, A., Horváth, Á., Hwang, J. W., Isobe, T., Kahlbow, J., Kalantar-Nayestanaki, N., Kawase, S., Kim, S., Kisamori, K., Kobayashi, T., Körper, D., Koyama, S., Kuti, I., Lapoux, V., Lindberg, S., Marqués, F. M., Masuoka, S., Mayer, J., Miki, K., Murakami, T., Najafi, M. A., Nakano, K., Nakatsuka, N., Nilsson, T., Obertelli, A., Santos, F. de Oliveira, Orr, N. A., Otsu, H., Ozaki, T., Panin, V., Paschalis, S., Revel, A., Rossi, D., Saito, A. T., Saito, T., Sasano, M., Sato, H., Satou, Y., Scheit, H., Schindler, F., Schrock, P., Shikata, M., Shimizu, Y., Simon, H., Sohler, D., Sorlin, O., Stuhl, L., Takeuchi, S., Tanaka, M., Thoennessen, M., Törnqvist, H., Togano, Y., Tomai, T., Tscheuschner, J., Tsubota, J., Uesaka, T., Yang, Z., Yoneda, K., Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Grand Accélérateur National d'Ions Lourds (GANIL), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
nucl-th ,Nuclear Theory ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,FOS: Physical sciences ,Shell evolution ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,ray spectroscopy ,Nuclear Theory (nucl-th) ,Nuclear Physics - Theory ,In-beam ,Island of inversion ,Nuclear Physics - Experiment ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
Detailed γ-ray spectroscopy of the exotic neon isotope 28Ne has been performed for the first time using the one-neutron removal reaction from 29Ne on a liquid hydrogen target at 240 MeV/nucleon. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for 28Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N=20 and N=28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain. Detailed $\gamma$-ray spectroscopy of the exotic neon isotope $^{28}$Ne has been performed for the first time using the one-neutron removal reaction from $^{29}$Ne on a liquid hydrogen target at 240~MeV/nucleon. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for $^{28}$Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder $p$-wave strength providing evidence of the breakdown of the $N=20$ and $N=28$ shell gaps. Only a weak, possible $f$-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large $p$-wave and small $f$-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
- Published
- 2023
- Full Text
- View/download PDF