1. Thermal Decomposition of [Cu(H2O)2(C8H4O4)], [CuNi(H2O)4(C8H4O4)2], and [Ni(H2O)2(C8H4O4)2](H2O)2 with the Formation of Metal and Bimetal Nanoparticles
- Author
-
N. A. Rudina, Arcady V. Ishchenko, and L. I. Yudanova
- Subjects
chemistry.chemical_classification ,Materials science ,Decarboxylation ,Thermal decomposition ,Nanoparticle ,Polymer ,Decomposition ,Bimetal ,Metal ,chemistry ,visual_art ,visual_art.visual_art_medium ,Physical chemistry ,Physical and Theoretical Chemistry ,Solid solution - Abstract
A comparison is made of the thermoanalytical characteristics and the composition and structure of solid products of the thermal decomposition of ortho-phthalates [Cu(H2O)2(C8H4O4)], [CuNi(H2O)4(C8H4O4)2], and [Ni(H2O)2(C8H4O4)](H2O)2. It is found that the thermal decomposition of these compounds upon heating to 500°C in a He atmosphere can be conditionally divided into two stages: dehydration and decarboxylation. Polymer conglomerates containing uncoated Cu nanoparticles as large as 75 nm are embedded into the polymer matrix of the composite obtained via the thermal decomposition of [Cu(H2O)2(C8H4O4)]. Three types of nanoparticles with sizes of 40–85, 15–25, and 10–15 nm are embedded in the polymer matrices of composites. The particles are Cux/Ni1−x solid solutions of different compositions, obtained via the thermolysis of [CuNi(H2O)4(C8H4O4)2]. It is found that the onset temperature of [CuNi(H2O)4(C8H4O4)2] decarboxylation at the third part of the second stage with the formation of a three-phase region correlates with the temperature of decomposition of Cux/Ni1 – x solid solutions in the binary metal system, due apparently to the quantum size effect.
- Published
- 2021
- Full Text
- View/download PDF