1. A multiplicative Gauss-Newton minimization algorithm: Theory and application to exponential functions
- Author
-
Anmol Gupta and Sanjay Kumar
- Subjects
Multiplicative calculus ,Optimization problem ,Applied Mathematics ,Convergence (routing) ,Gauss ,Multiplicative function ,Applied mathematics ,Initial value problem ,Function (mathematics) ,Mathematics ,Exponential function - Abstract
Multiplicative calculus (MUC) measures the rate of change of function in terms of ratios, which makes the exponential functions significantly linear in the framework of MUC. Therefore, a generally non-linear optimization problem containing exponential functions becomes a linear problem in MUC. Taking this as motivation, this paper lays mathematical foundation of well-known classical Gauss-Newton minimization (CGNM) algorithm in the framework of MUC. This paper formulates the mathematical derivation of proposed method named as multiplicative Gauss-Newton minimization (MGNM) method along with its convergence properties. The proposed method is generalized for n number of variables, and all its theoretical concepts are authenticated by simulation results. Two case studies have been conducted incorporating multiplicatively-linear and non-linear exponential functions. From simulation results, it has been observed that proposed MGNM method converges for 12972 points, out of 19600 points considered while optimizing multiplicatively-linear exponential function, whereas CGNM and multiplicative Newton minimization methods converge for only 2111 and 9922 points, respectively. Furthermore, for a given set of initial value, the proposed MGNM converges only after 2 iterations as compared to 5 iterations taken by other methods. A similar pattern is observed for multiplicatively-non-linear exponential function. Therefore, it can be said that proposed method converges faster and for large range of initial values as compared to conventional methods.
- Published
- 2021
- Full Text
- View/download PDF