1. On the rainbow planar Turán number of paths
- Author
-
Győri, Ervin, Martin, Ryan R., Paulos, Addisu, Tompkins, Casey, and Varga, Kitti
- Subjects
FOS: Mathematics ,Combinatorics (math.CO) - Abstract
An edge-colored graph is said to contain a rainbow-$F$ if it contains $F$ as a subgraph and every edge of $F$ is a distinct color. The problem of maximizing edges among $n$-vertex properly edge-colored graphs not containing a rainbow-$F$, known as the rainbow Turán problem, was initiated by Keevash, Mubayi, Sudakov and Verstraëte. We investigate a variation of this problem with the additional restriction that the graph is planar, and we denote the corresponding extremal number by $\ex_{\p}^*(n,F)$. In particular, we determine $\ex_{\p}^*(n,P_5)$, where $P_5$ denotes the $5$-vertex path., 22 pages, 9 figures
- Published
- 2023
- Full Text
- View/download PDF