1. Site-Specific Alkylation of the Islet Amyloid Polypeptide Accelerates Self-Assembly and Potentiates Perturbation of Lipid Membranes
- Author
-
Lekha Sleno, Noé Quittot, Steve Bourgault, Makan Golizeh, Margaryta Babych, Phuong Trang Nguyen, Nadjib Kihal, and Mélanie Côté-Cyr
- Subjects
Amyloid ,endocrine system ,Alkylation ,Context (language use) ,Peptide ,Fibril ,Protein Aggregation, Pathological ,Biochemistry ,Cell Line ,Membrane Lipids ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,medicine ,Animals ,Histidine ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,geography ,geography.geographical_feature_category ,Pancreatic islets ,Islet ,Islet Amyloid Polypeptide ,Rats ,medicine.anatomical_structure ,chemistry ,Biophysics ,Protein Conformation, beta-Strand ,Thioflavin ,Oxidation-Reduction ,Protein Processing, Post-Translational ,030217 neurology & neurosurgery - Abstract
The accumulation of insoluble amyloids in the pancreatic islets is a pathological hallmark of type II diabetes and correlates closely with the loss of β-cell mass. The predominant component of these amyloid deposits is the islet amyloid polypeptide (IAPP). The factors contributing to the conversion of IAPP from a monomeric bioactive peptide hormone into insoluble amyloid fibrils remain partially elusive. In this study, we investigated the effect of the oxidative non-enzymatic post-translational modification induced by the reactive metabolite 4-hydroxynonenal (HNE) on IAPP aggregation and cytotoxicity. Incubation of IAPP with exogenous HNE accelerated its self-assembly into β-sheet fibrils and led to the formation of a Michael adduct on the His-18 side chain. To model this covalent modification, the imidazole N(π) position of histidine was alkylated using a close analogue of HNE, the octyl chain. IAPP lipidated at His-18 showed a hastened random coil-to-β-sheet conformational conversion into fibrillar assemblies with a distinct morphology, a low level of binding to thioflavin T, and a high surface hydrophobicity. Introducing an octyl chain on His-18 enhanced the ability of the peptide to perturb synthetic lipid vesicles, to permeabilize the plasma membrane, and to induce the death of pancreatic β-cells. Alkylated IAPP triggered the self-assembly of unmodified IAPP by prompting primary nucleation and increased its capacity to perturb the plasma membrane, indicating that only a small proportion of the modified peptide is necessary to shift the balance toward the formation of proteotoxic species. This study underlines the importance of studying IAPP post-translational modifications induced by oxidative metabolites in the context of pancreatic amyloids.
- Published
- 2021
- Full Text
- View/download PDF