Guillaume P. Grolez, Giorgia Chinigò, Alexandre Barras, Mehdi Hammadi, Lucile Noyer, Kateryna Kondratska, Etmar Bulk, Thibauld Oullier, Séverine Marionneau-Lambot, Marilyne Le Mée, Stéphanie Rétif, Stéphanie Lerondel, Antonino Bongiovanni, Tullio Genova, Sébastien Roger, Rabah Boukherroub, Albrecht Schwab, Alessandra Fiorio Pla, Dimitra Gkika, Laboratoire de Physiologie Cellulaire : Canaux ioniques, inflammation et cancer - U 1003 (PHYCELL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Neuro-Dol (Neuro-Dol), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Laboratoire des Adaptations Métaboliques à l'Exercice en Conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-UFR Sciences et Techniques des Activités Physiques et Sportives - Clermont-Auvergne (UFR STAPS - UCA), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Rôle des canaux ioniques membranaires et du calcium intracellulaire dans la physiopathologie de la prostate, Université de Lille, Sciences et Technologies-Institut National de la Santé et de la Recherche Médicale (INSERM), Università degli studi di Torino = University of Turin (UNITO), NanoBioInterfaces - IEMN (NBI - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Westfälische Wilhelms-Universität Münster = University of Münster (WWU), Cancéropôle Grand-Ouest [Bretagne-Centre-Pays de Loire], Centre d'Imagerie du Petit Animal (CIPA), Université d'Orléans (UO), Transgenèse et archivage d'animaux modèles (TAAM), Centre National de la Recherche Scientifique (CNRS), CHU Lille, Plateformes Lilloises en Biologie et Santé - UAR 2014 - US 41 (PLBS), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), EA4245 - Transplantation, Immunologie, Inflammation [Tours] (T2i), Université de Tours (UT), Cancer Heterogeneity, Plasticity and Resistance to Therapies - UMR 9020 - U 1277 (CANTHER), This research was funded by the Ministère de l’Education Nationale and the InstitutNational de la Santé et de la Recherche Medicale (INSERM). The research of G.P.G. was supported bythe region Hauts–de–France and the University of Lille. The research of D.G. was supported by theInstitut Universitaire de France (IUF) and France Berkley Fund. D.G., A.F.P. and R.B. were supportedby the Institut National du Cancer (INCa—PLBIO14–213) and the CPER 'Photonics for Society'.A.F.P. and G.C. are supported by the Italian Ministry of Instruction, University and Research (MIUR),PRIN grant 'Leveraging basic knowledge of ion channel network in cancer for innovative therapeuticstrategies (LIONESS)' (grant number 20174TB8KW) and are part of the Associated InternationalLaboratory (CaPANCInv). A.S. is part of the Associated International Laboratory (CaPANCInv) andis supported by Deutsche Forschungsgemeinschaft SCHW 407/22-1., and IEMN, Collection
International audience; In the fight against prostate cancer (PCa), TRPM8 is one of the most promising clinical targets. Indeed, several studies have highlighted that TRPM8 involvement is key in PCa progression because of its impact on cell proliferation, viability, and migration. However, data from the literature are somewhat contradictory regarding the precise role of TRPM8 in prostatic carcinogenesis and are mostly based on in vitro studies. The purpose of this study was to clarify the role played by TRPM8 in PCa progression. We used a prostate orthotopic xenograft mouse model to show that TRPM8 overexpression dramatically limited tumor growth and metastasis dissemination in vivo. Mechanistically, our in vitro data revealed that TRPM8 inhibited tumor growth by affecting the cell proliferation and clonogenic properties of PCa cells. Moreover, TRPM8 impacted metastatic dissemination mainly by impairing cytoskeleton dynamics and focal adhesion formation through the inhibition of the Cdc42, Rac1, ERK, and FAK pathways. Lastly, we proved the in vivo efficiency of a new tool based on lipid nanocapsules containing WS12 in limiting the TRPM8–positive cells’ dissemination at metastatic sites. Our work strongly supports the protective role of TRPM8 on PCa progression, providing new insights into the potential application of TRPM8 as a therapeutic target in PCa treatment.