1. Generate then Select: Open-ended Visual Question Answering Guided by World Knowledge
- Author
-
Fu, Xingyu, Zhang, Sheng, Kwon, Gukyeong, Perera, Pramuditha, Zhu, Henghui, Zhang, Yuhao, Li, Alexander Hanbo, Wang, William Yang, Wang, Zhiguo, Castelli, Vittorio, Ng, Patrick, Roth, Dan, and Xiang, Bing
- Subjects
FOS: Computer and information sciences ,Computer Science - Computation and Language ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Computer Vision and Pattern Recognition (cs.CV) ,Computer Science - Computer Vision and Pattern Recognition ,Computation and Language (cs.CL) - Abstract
The open-ended Visual Question Answering (VQA) task requires AI models to jointly reason over visual and natural language inputs using world knowledge. Recently, pre-trained Language Models (PLM) such as GPT-3 have been applied to the task and shown to be powerful world knowledge sources. However, these methods suffer from low knowledge coverage caused by PLM bias -- the tendency to generate certain tokens over other tokens regardless of prompt changes, and high dependency on the PLM quality -- only models using GPT-3 can achieve the best result. To address the aforementioned challenges, we propose RASO: a new VQA pipeline that deploys a generate-then-select strategy guided by world knowledge for the first time. Rather than following the de facto standard to train a multi-modal model that directly generates the VQA answer, RASO first adopts PLM to generate all the possible answers, and then trains a lightweight answer selection model for the correct answer. As proved in our analysis, RASO expands the knowledge coverage from in-domain training data by a large margin. We provide extensive experimentation and show the effectiveness of our pipeline by advancing the state-of-the-art by 4.1% on OK-VQA, without additional computation cost. Code and models are released at http://cogcomp.org/page/publication_view/1010, Comment: Accepted to ACL 2023 Findings
- Published
- 2023
- Full Text
- View/download PDF