1. Explainable AI for CNN-based Prostate Tumor Segmentation in Multi-parametric MRI Correlated to Whole Mount Histopathology
- Author
-
Deepa Darshini Gunashekar, Lars Bielak, Leonard Hägele, Benedict Oerther, Matthias Benndorf, Anca-L. Grosu, Thomas Brox, Constantinos Zamboglou, and Michael Bock
- Subjects
Male ,Oncology ,Humans ,Prostatic Neoplasms ,Radiology, Nuclear Medicine and imaging ,Neural Networks, Computer ,Multiparametric Magnetic Resonance Imaging ,Magnetic Resonance Imaging - Abstract
Automatic prostate tumor segmentation is often unable to identify the lesion even if in multi-parametric MRI data is used as input, and the segmentation output is difficult to verify due to the lack of clinically established ground truth images. In this work we use an explainable deep learning model to interpret the predictions of a convolutional neural network (CNN) for prostate tumor segmentation. The CNN uses a U-Net architecture which was trained on multi-parametric MRI data from 122 patients to automatically segment the prostate gland and prostate tumor lesions. In addition, co-registered ground truth data from whole mount histopathology images were available in 15 patients that were used as a test set during CNN testing. To be able to interpret the segmentation results of the CNN, heat maps were generated using the Gradient Weighted Class Activation Map (Grad-CAM) method. With the CNN a mean Dice Sorensen Coefficient for the prostate gland and the tumor lesions of 0.62 and 0.31 with the radiologist drawn ground truth and 0.32 with wholemount histology ground truth for tumor lesions could be achieved. Dice Sorensen Coefficient between CNN predictions and manual segmentations from MRI and histology data were not significantly different. In the prostate the Grad-CAM heat maps could differentiate between tumor and healthy prostate tissue, which indicates that the image information in the tumor was essential for the CNN segmentation.
- Published
- 2022
- Full Text
- View/download PDF