30 results on '"Julien Sebag"'
Search Results
2. Arc Schemes in Geometry and Differential Algebra
- Author
-
Julien Sebag, Johannes Nicaise, and David Bourqui
- Subjects
Arc (geometry) ,Physics ,Differential algebra ,Geometry - Published
- 2020
- Full Text
- View/download PDF
3. Introduction
- Author
-
David Bourqui, Johannes Nicaise, and Julien Sebag
- Published
- 2020
- Full Text
- View/download PDF
4. Arc Schemes of Affine Algebraic Plane Curves and Torsion Kähler Differential Forms
- Author
-
Julien Sebag and David Bourqui
- Subjects
Physics ,Pure mathematics ,Kähler differential ,Plane curve ,Torsion (algebra) ,Affine transformation ,Algebraic number - Published
- 2020
- Full Text
- View/download PDF
5. Arc Scheme and Bernstein Operators
- Author
-
Luis Narváez Macarro, Julien Sebag, and Michel Gros
- Subjects
Arc (geometry) ,Computer science ,Scheme (mathematics) ,Topology - Published
- 2020
- Full Text
- View/download PDF
6. The Néron Multiplicity Sequence of Singularities
- Author
-
Beatriz Pascual-Escudero and Julien Sebag
- Subjects
Combinatorics ,Multiplicity (mathematics) ,Gravitational singularity ,Mathematics - Published
- 2020
- Full Text
- View/download PDF
7. Arc Schemes and Singularities
- Author
-
David Bourqui, Johannes Nicaise, and Julien Sebag
- Subjects
Arc (geometry) ,Physics ,Gravitational singularity ,Geometry - Published
- 2020
- Full Text
- View/download PDF
8. Finite formal model of toric singularities
- Author
-
David Bourqui, Julien Sebag, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Pure mathematics ,Monomial ,Class (set theory) ,arc schemes ,Mathematics::Commutative Algebra ,formal neighborhoods ,General Mathematics ,010102 general mathematics ,Toric variety ,Resolution of singularities ,Divisor (algebraic geometry) ,14B20 ,01 natural sciences ,Scheme (mathematics) ,0103 physical sciences ,Embedding ,14E18 ,010307 mathematical physics ,[MATH]Mathematics [math] ,0101 mathematics ,Variety (universal algebra) ,14M25 ,ComputingMilieux_MISCELLANEOUS ,toric varieties ,Mathematics - Abstract
We study the formal neighborhoods at rational non-degenerate arcs of the arc scheme associated with a toric variety. The first main result of this article shows that these formal neighborhoods are generically constant on each Nash component of the variety. Furthermore, using our previous work, we attach to every such formal neighborhood, and in fact to every toric valuation, a minimal formal model (in the class of stable isomorphisms) which can be interpreted as a measure of the singularities of the base-variety. As a second main statement, for a large class of toric valuations, we compute the dimension and the embedding dimension of such minimal formal models, and we relate the latter to the Mather discrepancy. The class includes the strongly essential valuations, that is to say those the center of which is a divisor in the exceptional locus of every resolution of singularities of the variety. We also obtain a similar result for monomial curves.
- Published
- 2019
- Full Text
- View/download PDF
9. Artin Motives, Weights, and Motivic Nearby Sheaves
- Author
-
Florian Ivorra and Julien Sebag
- Subjects
14F42 ,Pure mathematics ,14C15 ,14G22 ,Fiber (mathematics) ,General Mathematics ,010102 general mathematics ,Zero (complex analysis) ,Space (mathematics) ,14B20 ,Mathematics::Algebraic Topology ,01 natural sciences ,Cohomology ,Interpretation (model theory) ,Mathematics::Algebraic Geometry ,Mathematics::K-Theory and Homology ,0103 physical sciences ,Sheaf ,010307 mathematical physics ,0101 mathematics ,32S30 ,Realization (systems) ,Mathematics - Abstract
In this paper, we compute the Artin part of a relative cohomological motive, introduced by Ayoub and Zucker, as a “weight zero part” in two challenging contexts. For this, we first introduce, in a very natural way, the part of punctual weight $\leqslant0$ of any complex of mixed Hodge modules and verify that the Hodge realization of the Artin part of smooth cohomological motives coincide with the part of punctual weight $\leqslant0$ of its realization. Second, we compute the Artin part of the motivic nearby sheaf, introduced by Ayoub, and relate it to the Betti cohomology of Berkovich spaces defined by tubes in non-Archimedean geometry. In particular, the former result provides a motivic interpretation of the Betti cohomology of the analytic Milnor fiber (seen as a Berkovich space).
- Published
- 2019
- Full Text
- View/download PDF
10. Motives of rigid analytic tubes and nearby motivic sheaves
- Author
-
Julien Sebag, Florian Ivorra, Joseph Ayoub, University of Zurich, Universität Zürich [Zürich] = University of Zurich (UZH), Institut de Recherche Mathématique de Rennes (IRMAR), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
Ring (mathematics) ,Pure mathematics ,Formal power series ,Fiber (mathematics) ,General Mathematics ,010102 general mathematics ,Zero (complex analysis) ,Field (mathematics) ,Type (model theory) ,16. Peace & justice ,01 natural sciences ,10123 Institute of Mathematics ,510 Mathematics ,Mathematics::Algebraic Geometry ,Rational point ,0103 physical sciences ,Sheaf ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,2600 General Mathematics ,Mathematics - Abstract
Let k be a field of characteristic zero, R D k[[t]] the ring of formal power series and K D k((t)) its fraction field. Let X be a finite type R-scheme with smooth generic fiber. Let H be the t-adic completion of X and Hη the generic fiber of H. Let Z ⊂ Xσ bea locally closed subset of the special fiber of X. In this article, we establish a relation between the rigid motive of [Z] (the tube of Z in Hη) and the restriction to Z of the nearby motivic sheaf associated with the R-scheme X. Our main result, Theorem 7.1, can be interpreted as a motivic analog of a theorem of Berkovich. As an application, given a rational point x ∈ Xσ, we obtain an equality, in a suitable Grothendieck ring of motives, between the motivic Milnor fiber of Denef-Loeser at x and the class of the rigid motive of the analytic Milnor fiber of Nicaise-Sebag at x.
- Published
- 2017
- Full Text
- View/download PDF
11. Nilpotency in arc scheme of plane curves
- Author
-
Julien Sebag, Kodjo Egadédé Kpognon, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Polynomial (hyperelastic model) ,Differential ideal ,Pure mathematics ,Ring (mathematics) ,Algebra and Number Theory ,jet and arc scheme ,Plane curve ,010102 general mathematics ,Mathematical analysis ,14E18, 14H45, 32S99 ,Field (mathematics) ,01 natural sciences ,[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG] ,Curve singularity ,Arc (geometry) ,derivation module ,Scheme (mathematics) ,0103 physical sciences ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Differential (mathematics) ,Mathematics - Abstract
Let k be a field of characteristic 0. Let f∈k[X0,Y0] be a non-constant reduced polynomial. In this article we study the differential ideal {f}:=[f] of the differential ring k{X0,Y0}. We introduce the S-algorithm which allows, for every differential polynomial P∈k{X0,Y0}, to test if it belongs or not to the differential ideal {f}:=[f]. Another consequence of this study is to establish a precise characterization of the reducedness of the arc scheme associated with a plane curve X, defined over k, in terms of the geometry of X.
- Published
- 2016
- Full Text
- View/download PDF
12. NEUTROPHILS ALTER DSB REPAIR PATHWAY IN INFLAMED MUCOSA TO PROMOTE COLON CARCINOGENESIS
- Author
-
Triet Bui, Veronika Butin-Israeli, Stephen Hanauer, Julien Sebag, and Ronen Sumagin
- Subjects
Gastroenterology ,Immunology and Allergy ,digestive system diseases - Abstract
Due to exacerbated inflammation and recurring tissue injury patients with Inflammatory Bowel Disease (IBD) are at higher risk of developing colorectal cancer (CRC). Although, PMN infiltration of the intestinal mucosa is a hallmark of IBD, and is associated with tissue injury, the contribution of PMNs to CRC and more so to IBD associated CRC is not known. We recently showed that PMNs can acutely exacerbate tissue injury and promote genomic instability by promoting miR-23a and miR-155-dependent accumulation of double-strand breaks (DSBs) and inhibition of DSB-repair by homologous recombination (HR). We now demonstrate that in chronic gut inflammation and recurring epithelial injury, as seen in IBD, via similar miRNA-dependent mechanism, PMNs alter DNA damage responses (DDR) to promote CRC progression. In murine model of Colitis-associated CRC (Azoxymethane, AOM/Dextran sodium sulfate, DSS) and human CRC xenografts, intratumoral PMNs intriguingly, functional dualism, suppressing tumor onset, but promoting tumor cell survival and growth in progressive tumors. The observed PMN effects were mediated by persistent suppression of HR-mediated DSB repair. HR suppression by PMNs, initially resulted in elevated replication stress and increased tumor cell apoptosis, however, longer term, altered DDR transcriptional profile and facilitated the upregulation of DSB repair by non-homologous end-joining (NHEJ). NHEJ upregulation enhanced CRC progression and tumor cell survival. PMN depletion, CRSPER-mediated deletion of miR-155 responsive sequence in RAD51 (preserves HR activity) or inhibition of NHEJ by small molecule inhibitors increased tumor cell death and diminished tumor development. Collectively, our data define a novel link between PMN-mediated mucosal injury and colon carcinogenesis.
- Published
- 2021
- Full Text
- View/download PDF
13. Homological Planes in the Grothendieck Ring of Varieties
- Author
-
Julien Sebag, Institut de Recherche Mathématique de Rennes ( IRMAR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -AGROCAMPUS OUEST-École normale supérieure - Rennes ( ENS Rennes ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -Institut National des Sciences Appliquées ( INSA ) -Université de Rennes 2 ( UR2 ), Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
motivic Milnor fiber ,motivic nearby cycles ,Pure mathematics ,Ring (mathematics) ,14E05, 14R10 ,Plane (geometry) ,General Mathematics ,Geometry ,Nearby motives ,[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG] ,Algebraic surface ,Grothendieck group ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Affine transformation ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this note we identify the classes of Q-homological planes in the Grothendieck group of complex varieties K0(VarC). Precisely, we prove that a connected, smooth, affine, complex, algebraic surface X is a Q-homological plane if and only if [X] = in the ring K0(VarC) and Pic(X)Q := Pic(X) ⊗z Q = 0.
- Published
- 2015
- Full Text
- View/download PDF
14. Correction to: Motivic Integration
- Author
-
Johannes Nicaise, Julien Sebag, and Antoine Chambert-Loir
- Subjects
Algebra ,Motivic integration ,Mathematics - Published
- 2018
- Full Text
- View/download PDF
15. The Grothendieck Ring of Varieties
- Author
-
Julien Sebag, Johannes Nicaise, and Antoine Chambert-Loir
- Subjects
Pure mathematics ,Ring (mathematics) ,Morphism ,Mathematics::Commutative Algebra ,Mathematics::K-Theory and Homology ,Mathematics::Category Theory ,Scheme (mathematics) ,Structure (category theory) ,Zero (complex analysis) ,Field (mathematics) ,Motivic integration ,Equivalence (measure theory) ,Mathematics - Abstract
In this chapter, we define the Grothendieck ring of varieties over an arbitrary base scheme. This is a ring of virtual varieties up to cut-and-paste relations; it takes a central place in the theory of motivic integration, because (after a suitable localization and/or completion) it serves as the ring where motivic integrals take their values. After the basic definitions in section 1, we define the notion of motivic measures, which are ring morphisms from the Grothendieck ring to other rings with a more explicit structure. Motivic measures are fundamental both for the understanding of Grothendieck ring itself and for extracting geometric information from its elements. Among the motivic measures, we develop in sections 3 and 5 the cohomological and motivic realizations. In sections 5 and 6, we study the main structure theorems for the Grothendieck ring over a field of characteristic zero: the theorems of Bittner and Larsen-Lunts. Bittner’s theorem gives a presentation of the Grothendieck ring in terms of smooth projective varieties and blow-up relations, which is quite useful to construct motivic measures. The theorem of Larsen and Lunts relates equalities in the Grothendieck ring to the notion of stable birational equivalence. In section 4 we discuss a process of dimensional completion for the Grothendieck ring of varieties.
- Published
- 2018
- Full Text
- View/download PDF
16. Prologue: p-Adic Integration
- Author
-
Johannes Nicaise, Julien Sebag, and Antoine Chambert-Loir
- Subjects
Pure mathematics ,Prologue ,010102 general mathematics ,0103 physical sciences ,010307 mathematical physics ,Locally compact space ,0101 mathematics ,Mathematics::Representation Theory ,Motivic integration ,01 natural sciences ,Mathematics - Abstract
Motivic integration and some of its applications take they very inspiration from results of p-adic integration, that is, integration on analytic manifolds over non-Archimedean locally compact fields.
- Published
- 2018
- Full Text
- View/download PDF
17. Arc Schemes
- Author
-
Antoine Chambert-Loir, Johannes Nicaise, and Julien Sebag
- Published
- 2018
- Full Text
- View/download PDF
18. Greenberg Schemes
- Author
-
Antoine Chambert-Loir, Johannes Nicaise, and Julien Sebag
- Published
- 2018
- Full Text
- View/download PDF
19. Structure Theorems for Greenberg Schemes
- Author
-
Johannes Nicaise, Antoine Chambert-Loir, and Julien Sebag
- Subjects
Combinatorics ,Set (abstract data type) ,Mathematics::Commutative Algebra ,Integer ,Residue field ,Structure (category theory) ,Maximal ideal ,Mathematics::Representation Theory ,Discrete valuation ring ,Mathematics - Abstract
Throughout this chapter, we denote by R a complete discrete valuation ring with maximal ideal \(\mathfrak{m}\) and residue field k. For every integer n⩾0, we set \(R_{n} = R/\mathfrak{m}^{n+1}\).
- Published
- 2018
- Full Text
- View/download PDF
20. Cancellation and regular derivations
- Author
-
Julien Sebag, David Bourqui, Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)
- Subjects
Power series ,Ring (mathematics) ,Pure mathematics ,Algebra and Number Theory ,Applied Mathematics ,010102 general mathematics ,Cylinder ,010103 numerical & computational mathematics ,[MATH]Mathematics [math] ,0101 mathematics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this paper, we establish a criterion for every complete separated linearly topologized ring to be isomorphic to a ring of power series, i.e. to be a cylinder over another complete topological ring. We use this criterion to establish a general statement of cancellation in the category of local complete but non-necessarily adic topological [Formula: see text]-algebras.
- Published
- 2019
- Full Text
- View/download PDF
21. Differential Equations andA-Approximations
- Author
-
Julien Sebag
- Subjects
Stochastic partial differential equation ,Pure mathematics ,Algebra and Number Theory ,Linear differential equation ,Differential equation ,Mathematical analysis ,First-order partial differential equation ,Differential algebraic geometry ,Two-form ,Algebraic differential equation ,Mathematics ,Integrating factor - Abstract
In this article, we introduce the notion of A-approximations associated with a polynomial differential equation F = 0 of order n ≥ 1 and degree d ≥ 2, defined over a differential field of characteristic zero. We also give applications of this construction to the irreducible decomposition of perfect differential ideals, generated by a single element.
- Published
- 2009
- Full Text
- View/download PDF
22. The Cartan–Tresse linearization polynomial and applications
- Author
-
Julien Sebag and Olivier Ripoll
- Subjects
Polynomial ,Algebra and Number Theory ,Mathematical analysis ,First-order partial differential equation ,Singular solutions ,Differential algebra ,Algebra ,Linearization ,Ordinary differential equation ,Web geometry ,Differential algebraic geometry ,Universal differential equation ,Mathematics ,Algebraic differential equation - Abstract
In this paper, we study the influence of the Cartan–Tresse linearization polynomial of a differential equation of order one in some classical problems of analysis, differential algebra and geometry, as singular solutions, the Ritt problem, or webs theory.
- Published
- 2008
- Full Text
- View/download PDF
23. Le théorème d'irréductibilité de Kolchin
- Author
-
Julien Sebag, Johannes Nicaise, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé (LPP), and Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Singularity ,010102 general mathematics ,0103 physical sciences ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics ,General Medicine ,Algebraic geometry ,0101 mathematics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
Resume Nous presentons une preuve geometrique du theoreme de Kolchin qui utilise l'existence de resolutions des singularites en caracteristique nulle. Nous montrons egalement les limites de cette technique en caracteristique positive en donnant un contre-exemple. Pour citer cet article : J. Nicaise, J. Sebag, C. R. Acad. Sci. Paris, Ser. I 341 (2005).
- Published
- 2005
- Full Text
- View/download PDF
24. Introductory notes on the model theory of valued fields
- Author
-
Zoé Chatzidakis, Julien Sebag, Johannes Nicaise, and Raf Cluckers
- Subjects
Model theory ,Algebra ,Mathematics - Published
- 2011
- Full Text
- View/download PDF
25. Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry
- Author
-
Raf Cluckers, Julien Sebag, and Johannes Nicaise
- Subjects
Model theory ,Algebra ,Noetherian ,Pure mathematics ,Zero (complex analysis) ,Algebra over a field ,Algebraic number ,Motivic integration ,Mathematics ,Exponential function - Abstract
The development of Maxim Kontsevich's initial ideas on motivic integration has unexpectedly influenced many other areas of mathematics, ranging from the Langlands program over harmonic analysis, to non-Archimedean analysis, singularity theory and birational geometry. This book assembles the different theories of motivic integration and their applications for the first time, allowing readers to compare different approaches and assess their individual strengths. All of the necessary background is provided to make the book accessible to graduate students and researchers from algebraic geometry, model theory and number theory. Applications in several areas are included so that readers can see motivic integration at work in other domains. In a rapidly-evolving area of research this book will prove invaluable. This first volume contains introductory texts on the model theory of valued fields, different approaches to non-Archimedean geometry, and motivic integration on algebraic varieties and non-Archimedean spaces.
- Published
- 2011
- Full Text
- View/download PDF
26. Introduction
- Author
-
Julien Sebag, Raf Cluckers, and Johannes Nicaise
- Subjects
Algebra ,Model theory ,Pure mathematics ,Algebra over a field ,Motivic integration ,Mathematics - Published
- 2011
- Full Text
- View/download PDF
27. A survey of algebraic exponential sums and some applications
- Author
-
Emmanuel Kowalski, Johannes Nicaise, Julien Sebag, and Raf Cluckers
- Subjects
Pure mathematics ,Algebraic number ,Mathematics ,Exponential function - Published
- 2011
- Full Text
- View/download PDF
28. RIGID GEOMETRY AND THE MONODROMY CONJECTURE
- Author
-
Julien Sebag and Johannes Nicaise
- Subjects
Conjecture ,Monodromy ,Geometry ,Mathematics - Published
- 2007
- Full Text
- View/download PDF
29. Motivic Serre invariants, ramification, and the analytic Milnor fiber
- Author
-
Julien Sebag, Johannes Nicaise, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé (LPP), and Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,General Mathematics ,Étale cohomology ,Field (mathematics) ,01 natural sciences ,Mathematics::Algebraic Topology ,Mathematics - Algebraic Geometry ,symbols.namesake ,14G22 ,14B05 ,32S55 ,Mathematics::Algebraic Geometry ,Mathematics::K-Theory and Homology ,0103 physical sciences ,FOS: Mathematics ,0101 mathematics ,Algebraic Geometry (math.AG) ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Fiber (mathematics) ,010102 general mathematics ,Fibration ,Algebraic variety ,Cohomology ,Riemann zeta function ,Monodromy ,symbols ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics - Abstract
We show how formal and rigid geometry can be used in the theory of complex singularities, and in particular in the study of the Milnor fibration and the motivic zeta function. We introduce the so-called analytic Milnor fiber associated to the germ of a morphism f from a smooth complex algebraic variety X to the affine line. This analytic Milnor fiber is a smooth rigid variety over the field of Laurent series C((t)). Its etale cohomology coincides with the singular cohomology of the classical topological Milnor fiber of f; the monodromy transformation is given by the Galois action. Moreover, the points on the analytic Milnor fiber are closely related to the motivic zeta function of f, and the arc space of X. We show how the motivic zeta function can be recovered as some kind of Weil zeta function of the formal completion of X along the special fiber of f, and we establish a corresponding Grothendieck trace formula, which relates, in particular, the rational points on the analytic Milnor fiber over finite extensions of C((t)), to the Galois action on its etale cohomology. The general observation is that the arithmetic properties of the analytic Milnor fiber reflect the structure of the singularity of the germ f., Comment: Some minor errors corrected. The original publication is available at http://www.springerlink.com
- Published
- 2007
- Full Text
- View/download PDF
30. Motivic integration on smooth rigid varieties and invariants of degenerations
- Author
-
François Loeser and Julien Sebag
- Subjects
14G22 ,General Mathematics ,14D07 ,14Jxx ,Algebraic variety ,Motivic cohomology ,11S80,14E22 ,Algebra ,Mathematics - Algebraic Geometry ,Mathematics::Algebraic Geometry ,14D06,14G22,14J17,14J32 ,FOS: Mathematics ,11S80 ,Invariant (mathematics) ,Motivic integration ,Algebraic Geometry (math.AG) ,Mathematics - Abstract
We construct a theory of motivic integration for smooth rigid varieties. As an application new invariants of degenerations are obtained., Comment: 24 pages
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.