1. Catching Element Formation In The Act - The Case for a New MeV Gamma-Ray Mission: Radionuclide Astronomy in the 2020s
- Author
-
Timmes, Fryer, F., Hungerford, C., Couture, A. L., Adams, A., Aoki, F., Arcones, W., Arnett, A., Auchettl, D., Avila, K., Badenes, M., Baron, C., Bauswein, E., Beacom, A., Blackmon, J., Blondin, J., Bloser, S., Boggs, P., Boss, S., Brandt, A., Bravo, T., Brown, E., Bruenn, P., Budtz-Jørgensen, S., Burns, C., Calder, E., Caputo, A., Champagne, R., Chevalier, A., Chieffi, R., Chipps, A., Cinabro, K., Clarkson, D., Clayton, O., Coc, D., Connolly, A., Conroy, D., Côté, C., Couch, B., Dauphas, S., Boer, N., Deibel, R. J., Denisenkov, C., Desch, P., Dessart, S., Diehl, L., Doherty, R., Domínguez, C., Dong, I., Dwarkadas, S., Fan, V., Fields, D., Fields, B., Filippenko, C., Fisher, A., Foucart, R., Fransson, F., Fröhlich, C., Fuller, C., Gibson, G., Giryanskaya, B., Görres, V., Goriely, J., Grebenev, S., Grefenstette, S., Grohs, B., Guillochon, E., Harpole, J., Harris, A., Harris, C., Harrison, J. A., Hartmann, F., Hashimoto, D., Heger, M., Hernanz, A., Herwig, M., Hirschi, F., Hix, R., Höflich, R. W., Hoffman, P., Holcomb, R., Hsiao, C., Iliadis, E., Janiuk, C., Janka, A., Jerkstrand, T., Johns, A., Jones, L., José, S., Kajino, J., Karakas, T., Karpov, A., Kasen, P., Kierans, D., Kippen, C., Korobkin, M., Kobayashi, O., Kozma, C., Krot, C., Kumar, S., Kuvvetli, P., Laird, I., Laming, A., Larsson, J. M., Lattanzio, J., Lattimer, J., Leising, J., Lennarz, M., Lentz, A., Limongi, E., Lippuner, M., Livne, J., Lloyd-Ronning, E., Longland, N., Lopez, R., Lugaro, L. A., Lutovinov, M., Madsen, A., Malone, K., Matteucci, C., Mcenery, F., Meisel, J., Messer, Z., Metzger, B., Meyer, B., Meynet, B., Mezzacappa, G., Miller, A., Miller, J., Milne, R., Misch, P., Mitchell, W., Mösta, L., Motizuki, P., Müller, Y., Mumpower, B., Murphy, M., Nagataki, J., Nakar, S., Nomoto, E., Nugent, K., Nunes, P., Shea, F. O., Oberlack, B., Pain, U., Parker, S., Perego, L., Pignatari, A., Pinedo, M., Plewa, G. M., Simon Portegies Zwart, Poznanski, S. F., Priedhorsky, D., Pritychenko, W., Radice, B., Ramirez-Ruiz, D., Rauscher, E., Reddy, T., Rehm, S., Reifarth, E., Richman, R., Ricker, D., Rijal, P., Roberts, N., Röpke, L., Rosswog, F., Ruiter, S., Ruiz, A. J., Savin, C., Schatz, D. W., Schneider, H., Schwab, D., Seitenzahl, J., Shen, I., Siegert, K., Sim, T., Smith, S., Smith, D., Smith, K., Sollerman, M., Sprouse, J., Spyrou, T., Starrfield, A., Steiner, S., Strong, A., Sukhbold, A. W., Suntzeff, T., Surman, N., Tanimori, R., The, T., S Thielemann, L., K Tolstov, F., Tominaga, A., Tomsick, N., Townsley, J., Tsintari, D., Tsygankov, P., Vartanyan, S., Venters, D., Vestrand, T., Vink, T., Waldman, J., Wang, R., Wang, L., Warren, X., West, M., Wheeler, C., Wiescher, J. C., Winkler, M., Winter, C., Wolf, L., Woolf, B., Woosley, R., Wu, S., Wrede, J., Yamada, C., Young, S., Zegers, P., and Zingale, R.
- Subjects
Physics ,education.field_of_study ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Population ,Gamma ray ,Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Galaxy ,Interstellar medium ,Supernova ,Neutron star ,Nucleosynthesis ,0103 physical sciences ,education ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.
- Published
- 2019
- Full Text
- View/download PDF