90 results on '"Jérôme Benveniste"'
Search Results
2. Monthly sea level fingerprints from 1992-2017, utilising ESA CCI Essential Climate Variables in an ensemble modelling framework
- Author
-
Stephen Chuter, Andrew Zammit-Mangion, Jonathan Bamber, and Jérôme Benveniste
- Abstract
Sea level rise is one of the greatest socio-economic impacts of climate change in the 21st Century. Whilst global mean sea level is an essential climate variable (ECV) for assessing the integrated response of the Earth system to climate change, regional sea level variability is of primary concern for policy-making decisions and the development of adaptation strategies in coastal localities. Redistribution of terrestrial mass, in the form of hydrological and land ice mass fluxes, partly drives this regional sea level variability due to its impact on the Earth’s gravity, rotation and deformation (GRD), termed ‘Sea Level Fingerprints’ or Barystatic-GRD fingerprints. With increasing mass losses projected from ice sheets and glaciers over the coming centuries, the magnitude and relative contribution of these Barystatic-GRD fingerprints to regional sea level change are expected to increase. As a result, accurately quantifying this phenomenon and its uncertainty is critical when assessing contemporary and future regional sea level variability.Current contemporary Barystatic-GRD fingerprints are typically either calculated using a single mass loading observation source or provide discontinuous coverage since 1992 (the satellite altimetry era). Here, we present a continuous monthly Barystatic-GRD fingerprint product from 1992-2017, computed from an ensemble of mass loadings derived from differing observation techniques. To achieve this, we use the Ice Sheet and Sea Level Model (ISSM) sea level equation solver, which uses a finite element approach to solving the sea level equation at high spatial-temporal resolution, whilst maintaining computational efficiency. This enables us to use an ensemble modelling framework, ensuring the computed Barystatic-GRD fingerprint encompasses the variability between differing observation techniques. Additionally, it allows us to propagate the observation uncertainties into the fingerprint uncertainty in a robust manner. As well as the total Barystatic-GRD fingerprint, we assess the contribution of individual terrestrial components (Antarctica, Greenland, Glaciers, and hydrological mass change). This work is part of the Fingerprinting Approach to Close Regional Sea Level Budgets using ESA-CCI (FACTORS), a European Space Agency Climate Change Initiative Research Fellowship.
- Published
- 2023
- Full Text
- View/download PDF
3. New improvements for monitoring the Ocean Heat Content and the Earth Energy imbalance (MOHeaCAN)
- Author
-
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Victor Rousseau, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, Jérôme Benveniste, Gérald Dibarboure, and Francois Bignalet-Cazalet
- Abstract
The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of energy in the climate system. While necessary to better understand the Earth’s warming climate, measuring the EEI is challenging as it is a globally integrated variable whose variations are small (0.5-1 W.m−2) compared to the amount of energy entering and leaving the climate system (~ 340 W.m-2). Accuracies better than 0.1 W.m−2 are needed to evaluate the temporal variations of the EEI at decadal and longer time-scales. The CERES experiment provides EEI time variations with a typical uncertainty of ± 0.1 W.m−2 and shows a trend in EEI of 0.50 +/- 0.47 W.m−2 per decade over the period 2005-2019. The combination of space altimetry and space gravimetry measurements provides an estimate of the ocean heat content (OHC) change which is an accurate proxy of EEI (because >90% of the excess of energy stored by the planet in response to the EEI is accumulated in the ocean in the form of heat). In Marti et al. (2021), the global OHC was estimated at global scales based on the combination of space altimetry and space gravimetry measurements over 2002-2016. Changes in the EEI were then derived with realistic estimates of its uncertainty. Here we present the improvements brought to the global OGC and EEI over an extended period (2002-2021), such as the calculation of the expansion efficiency of heat over the total water column, the improvement of ocean mass solution, the empirical correction of the wet tropospheric correction of Jason-3 altimeter measurements (Barnoud et al., 2022). The space geodetic GOHC-EEI product based on space altimetry and space gravimetry is available on the AVSIO website at https://doi.org/10.24400/527896/a01-2020.003. References: Barnoud A., Picard B., Meyssignac B., Marti F., Ablain M., Roca R. Reducing the uncertainty in the satellite altimetry estimates of global mean sea level trends using highly stable water vapour climate data records. Submitted to JGR: Oceans. Marti, F., Blazquez, A., Meyssignac, B., Ablain, M., Barnoud, A., Fraudeau, R., Jugier, R., Chenal, J., Larnicol, G., Pfeffer, J., Restano, M., and Benveniste, J.: Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry, Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, 2022.
- Published
- 2023
- Full Text
- View/download PDF
4. Ocean Circulation from Space
- Author
-
Rosemary Morrow, Lee-Lueng Fu, Marie-Héléne Rio, Richard Ray, Pierre Prandi, Pierre-Yves Le Traon, and Jérôme Benveniste
- Subjects
Geophysics ,Geochemistry and Petrology - Abstract
This paper reviews the recent progress in our estimation of ocean dynamic topography and the derived surface geostrophic currents, mainly based on multiple nadir radar altimeter missions. These altimetric observations provide the cornerstone of our ocean circulation observing system from space. The largest signal in sea surface topography is from the mean surface dominated by the marine geoid, and we will discuss recent progress in observing the mean ocean circulation from altimetry, once the geoid and other corrections have been estimated and removed. We then address the recent advances in our observations of the large-scale and mesoscale ocean circulation from space, and the particular challenges and opportunities for new observations in the polar regions. The active research in the ocean barotropic tides and internal tidal circulation is also presented. The paper also addresses how our networks of global multi-satellite and in situ observations are being combined and assimilated to characterize the four-dimensional ocean circulation, for climate research and ocean forecasting systems. For the future of ocean circulation from space, the need for continuity of our current observing system is crucial, and we discuss the exciting enhancement to come with global wide-swath altimetry, the extension into the coastal and high-latitude regions, and proposals for direct total surface current satellites in the 2030 period.
- Published
- 2023
- Full Text
- View/download PDF
5. SAR, SARin, RDSAR and FF-SAR Altimetry Processing on Demand over Inland Water for Cryosat-2, Sentinel-3 & Sentinel-6 at ESA’s Altimetry Virtual Lab
- Author
-
Jérôme Benveniste, Salvatore Dinardo, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Luciana Fenoglio-Marc, Carla Orrù, Marco Restano, and Américo Ambrózio
- Abstract
This presentation provides an update on the ESA radar altimetry processing services portfolio, known as SARvatore, for the exploitation of CryoSat-2 (CS-2) and Sentinel-3 (S-3) data from L1A (FBR) data products up to SAR/SARin L2 geophysical data products. The following on-line & on-demand services compose the portfolio, now hosted in the ESA Altimetry Virtual Lab at the EarthConsole® (https://earthconsole.eu): The ESA-ESRIN SARvatore (SAR Versatile Altimetric Toolkit for Research & Exploitation) for CS-2 and S-3 services. These processor prototypes allow the users to customize the processing at L1b & L2 by setting a list of configurable options, including those not available in the operational processing chains (e.g., SAMOSA+ and ALES+ SAR retrackers). The TUDaBo SAR-RDSAR (TU Darmstadt – U Bonn SAR-Reduced SAR) for CS-2 and S-3 service. It allows users to generate reduced SAR, unfocused SAR & LRMC data. Several configurable L1b & L2 processing options and retrackers (BMLE3, SINC2, TALES, SINCS, SINCS OV) are available. The TU München ALES+ SAR for CS-2 and S-3 service. It allows users to process L1b data applying the empirical ALES+ SAR subwaveform retracker, including a dedicated SSB solution. The Aresys FF-SAR (Fully-Focused SAR) for CS-2 & S-3 service. It provides the capability to produce L1b products with several configurable options and with the possibility of appending the ALES+ FFSAR output to the L1b products. In the future, the service will be extended to process Sentinel-6 data. The following new services will be made available: the CLS SMAP S-3 FF-SAR processor (s-3-smap, http://doi.org/10.5270/esa-cnes.sentinel-3.smap) and the ESA-ESTEC/isardSAT L1 Sentinel-6 Ground Prototype Processor. All output data products are generated in standard netCDF format and are therefore also compatible with the multi-mission “Broadview Radar Altimetry Toolbox” (BRAT, http://www.altimetry.info). The Altimetry Virtual Lab is a community space for simplified processing services and knowledge-sharing, hosted on the EarthConsole®, a powerful EO data processing platform now on the ESA Network of Resources. This enables SARvatore Services to remain open for worldwide scientific applications, including for R&D studies on the retrieval of radar altimetry measured variables contributing to Inland Water monitoring (write to altimetry.info@esa.int for further information).
- Published
- 2023
- Full Text
- View/download PDF
6. Modeling Envisat RA-2 waveforms in the coastal zone: Case study of calm water contamination
- Author
-
Graham D. Quartly, Christine Gommenginger, Stefano Vignudelli, Jesús Gómez-Enri, Peter Challenor, Jérôme Benveniste, and Paolo Cipollini
- Subjects
Storm surge ,FOS: Physical sciences ,Storm ,Sea-surface height ,Geotechnical Engineering and Engineering Geology ,law.invention ,Marine pollution ,Physics - Atmospheric and Oceanic Physics ,law ,Climatology ,Atmospheric and Oceanic Physics (physics.ao-ph) ,Tide gauge ,Altimeter ,Electrical and Electronic Engineering ,Radar ,Digital elevation model ,Geology - Abstract
Radar altimeters have so far had limited use in the coastal zone, the area with most societal impact. This is due to both lack of, or insufficient accuracy in the necessary corrections, and more complicated altimeter signals. This letter examines waveform data from the Envisat RA-2 as it passes regularly over Pianosa (a 10-km2 island in the northwestern Mediterranean). Forty-six repeat passes were analyzed, with most showing a reduction in signal upon passing over the island, with weak early returns corresponding to the reflections from land. Intriguingly, one third of cases showed an anomalously bright hyperbolic feature. This feature may be due to extremely calm waters in the Golfo della Botte (northern side of the island), but the cause of its intermittency is not clear. The modeling of waveforms in such a complex land/sea environment demonstrates the potential for sea surface height retrievals much closer to the coast than is achieved by routine processing. The long-term development of altimetric records in the coastal zone will not only improve the calibration of altimetric data with coastal tide gauges but also greatly enhance the study of storm surges and other coastal phenomena.
- Published
- 2023
- Full Text
- View/download PDF
7. A RIP-based SAR retracker and its application in North East Atlantic with Sentinel-3
- Author
-
Sebastian Grayek, M. Joana Fernandes, Jérôme Benveniste, Remko Scharroo, Salvatore Dinardo, Matthias Becker, Luciana Fenoglio-Marc, and Joanna Staneva
- Subjects
Synthetic aperture radar ,Atmospheric Science ,Radiometer ,010504 meteorology & atmospheric sciences ,Mode (statistics) ,Aerospace Engineering ,Astronomy and Astrophysics ,01 natural sciences ,law.invention ,Troposphere ,Wave model ,Geophysics ,Space and Planetary Science ,Radar altimeter ,law ,0103 physical sciences ,General Earth and Planetary Sciences ,Tide gauge ,Altimeter ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Just as CryoSat-2, Sentinel-3 embarks on board a radar altimeter (SRAL) with the novel Synthetic Aperture Radar (SAR) mode that enables higher resolution and more accurate altimeter-derived parameters in the coastal zone, thanks to the reduced along-track footprint. Exploiting the SAR data in the recent years, many researchers have already proven that the performance of SAR altimetry with specific coastal retrackers is superior to collocated Pseudo-Low Resolution Mode (PLRM) coastal altimetry algorithms but they also pointed out that residual errors due to land contamination are still present in the very proximity of the land (0–3 km). The objective of this work is to further improve these results by exploiting extra information provided by SAR altimeters, namely the so-called Range Integrated Power (RIP), the new waveform built by a simple integration of the Doppler beams in the range direction. The RIP characterizes the backscattering state of the ground cell, towards which all the Doppler beams have been steered. These developments lead to a new retracker, here coined SAMOSA++, in which the RIP, as computed from the L1B-S data, is converted into a surface backscattering profile and directly integrated in the SAMOSA retracker as part of the model formulation itself. In this way, the modified SAMOSA model is automatically and autonomously able to cope with the different return waveform shapes from different surface types: either diffusive or specular. The mean square slope computed from the RIP is also estimated, representing a new output of the retracker. The performance of this new retracker is here cross-compared against its previous version, SAMOSA+, and against the standard Sentinel-3 marine PDGS (Payload Data Ground Segment) SAR retracker (SAMOSA2) in both coastal zone and open ocean in order to ensure a seamless transition between these zones. The new retracker SAMOSA++ is validated in the North East Atlantic region, where appropriate in situ validation data are available. The retrievals from the new retracker are cross-compared against the network of tide gauges and buoys in the German Bight and versus the output of the GCOAST Helmholtz-Zentrum Geesthacht (HZG) regional circulation and wave model. In addition, sea level estimates derived with different ocean tide and wet path delay geophysical correction models are compared. Results indicate that in this region the best geophysical correction models are the FES2014b tide model and the GPD+ wet tropospheric correction that incorporates data from the Sentinel-3 on-board radiometer. Analyses show that both SAMOSA+ and SAMOSA++ ensure the continuity of the PDGS SAR Marine retracker in the open ocean, leading to clear improvements in the coastal zone, larger for SAMOSA++ than for SAMOSA+. In summary, the new SAMOSA++ retracker retrieves more accurate altimetric parameters in the coastal zone, with a better consistency with respect to regional ocean models and in situ data.
- Published
- 2021
- Full Text
- View/download PDF
8. Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies
- Author
-
Sh. Roohi, Salvatore Dinardo, E.A. Issawy, G. Zhang, Jérôme Benveniste, and Nico Sneeuw
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Mode (statistics) ,Aerospace Engineering ,Astronomy and Astrophysics ,Northern ireland ,01 natural sciences ,Water level ,Geophysics ,Waveform analysis ,Space and Planetary Science ,Satellite altimetry ,0103 physical sciences ,General Earth and Planetary Sciences ,Environmental science ,Altimeter ,Qinghai lake ,010303 astronomy & astrophysics ,Full waveform ,0105 earth and related environmental sciences ,Remote sensing - Abstract
As the first satellite altimetry mission operating in sar (delay-Doppler) mode, CryoSat-2 is an interesting mission to analyze its performance for water level monitoring over inland water bodies. It offers the opportunity to make comparison of sar and conventional altimeters by a multi-mode altimeter mounted on the same platform with a long repeat orbit. This comparison gives us more knowledge about the performance of the sar altimeter. Even tough it is not possible to perform it over same objects. In this paper we analyze the CryoSat-2 performance for water level monitoring via full- and sub-waveform retracking against in-situ gauge and L2 products of other satellite altimetry missions, e.g. Envisat and Jason-2. To this end, we retrack the full-waveforms and sub-waveforms with different empirical and physical retracking algorithms such as ocog , threshold, β -parameters and samosa 3. We evaluate its capability in all measurement modes, i.e. lrm , sar and sari n, over inland water bodies located in different climatic zones. We selected study areas with different shapes and sizes. Relative to in situ measurements we find a precision of the CryoSat-2 lrm mode of 15 cm rms over Qinghai lake (China) and 13 cm over Erie lake ( usa ). This is an improvement over Envisat, yielding precision of 17 cm in both cases. For the sar mode over Neagh lake (Northern Ireland) and Derg lake (Ireland) we obtain 15 cm and 13 cm where Envisat yields 28 cm and 100 cm , respectively. The sari n mode’s precision is assessed over Nasser lake (Egypt) with 25 cm rms and Athabasca lake (Canada) with 16 cm . Over these lakes Jason-2 achieved 54 cm and Envisat 19 cm , respectively. The most precise results of CryoSat-2 are obtained with our retracking and sub-waveform selection scenarios. Comparing CryoSat-2 results from our retracking scenarios using L1b data with those results obtained from L2 products (data) of this mission shows an improvement of 4–17 cm. The minimum and maximum improvements belong to Erie and Derg lakes respectively, the largest and smallest lakes. From the waveform analysis over lakes with different shapes and sizes, we found that the first and the mean-all sub-waveforms (mean correction from all sub-waveforms) retracked with the threshold and samosa 3 (only for sar mode) retrackers are appropriate to retrieve water level variation of small lakes and complex shaped lakes in this study. Over large lakes the full-waveform retracking leads to better results. In the case of icy-lake objects, sub-waveform retracking scenarios (the first and mean-all sub-waveforms) are more precise than the other scenarios. These are our findings over few samples, though more samples need to be analyzed to support them strongly.
- Published
- 2021
- Full Text
- View/download PDF
9. Altimetry-based sea level trends along the coasts of Western Africa
- Author
-
Marcello Passaro, Anny Cazenave, Jean François Legeais, Fabien Léger, Florence Birol, Rafael Almar, Jérôme Benveniste, Florence Marti, and Fernando Niño
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Aerospace Engineering ,Climate change ,Astronomy and Astrophysics ,Context (language use) ,Pelagic zone ,01 natural sciences ,ddc ,Geophysics ,Space and Planetary Science ,Climatology ,0103 physical sciences ,Period (geology) ,General Earth and Planetary Sciences ,Satellite ,Submarine pipeline ,Altimeter ,010303 astronomy & astrophysics ,Geology ,Sea level ,0105 earth and related environmental sciences - Abstract
We present results of contemporary coastal sea level changes along the coasts of Western Africa, obtained from a dedicated reprocessing of satellite altimetry data done in the context of the ESA ‘Climate Change Initiative’ sea level project. High sampling rate (20 Hz) sea level data from the Jason-1 and Jason-2 missions over a 14-year-long time span (July 2002 to June 2016) are considered. The data were first retracked using the ALES adaptative leading edge subwaveform retracker. The X-TRACK processing system developed to optimize the completeness and accuracy of the corrected sea level time series in coastal ocean areas was then applied. From the 14-year long sea level time series finally obtained, we estimate sea level trends along the Jason-1 & 2 tracks covering the study region. We analyze regional variations in sea level trends, with a focus on the changes observed between the open ocean to the coastal zone. Compared to the conventional 1 Hz sea level products dedicated to open ocean applications, the retracked 20 Hz measurements used in this study allow us to retrieve valid sea level information much closer to the coast (less than 3–4 km to the coast, depending on the satellite track location). The main objective of this study is twofold: (1) provide sea level products in the coastal areas from reprocessed altimetry data and (2) check whether sea level changes at the coast differ from that reported in the open ocean with conventional altimetry products. In the selected region, results show that over the study period, sea level trends observed near the coast of Western Africa are significantly different than offshore trends. In order to assess the robustness of the results, detailed analyses are performed at several locations to discriminate between possible drifts in the geophysical corrections and physical processes potentially able to explain the sea level changes observed close to the coast.
- Published
- 2021
- Full Text
- View/download PDF
10. High-Resolution (SAR) Altimetry Processing on Demand for Cryosat-2 and Sentinel-3 at ESA’s Altimetry Virtual Lab
- Author
-
Jérôme Benveniste, Salvatore Dinardo, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Luciana Fenoglio-Marc, Giovanni Sabatino, Marco Restano, Américo Ambrózio, Beniamino Abis, and Carla Orrù
- Abstract
The scope of this presentation is to provide an update on the ESA radar altimetry services portfolio for the exploitation of CryoSat-2 (CS-2) and Sentinel-3 (S-3) data from L1A (FBR) data products up to SAR/SARin L2 geophysical data products. At present, the following on-line & on-demand services compose the portfolio:The ESA-ESRIN SARvatore (SAR Versatile Altimetric TOolkit for Research & Exploitation) for CS-2 and S-3 services. These processor prototypes allow the users to customize the processing at L1b & L2 by setting a list of configurable options, including those not available in the operational processing chains (e.g. SAMOSA+ and ALES+ SAR retrackers). The TUDaBo SAR-RDSAR (TU Darmstadt – U Bonn SAR-Reduced SAR) for CS-2 and S-3 service. It allows users to generate reduced SAR, unfocused SAR & LRMC data. Several configurable L1b & L2 processing options and retrackers (BMLE3, SINC2, TALES, SINCS, SINCS OV) are available. The TU München ALES+ SAR for CS-2 and S-3 service. It allows users to process official L1b data and produces L2 products by applying the empirical ALES+ SAR subwaveform retracker, including a dedicated SSB solution. The Aresys FF-SAR (Fully-Focused SAR) for CS-2 service. Currently under development, it will provide the capability to produce L1b products with several configurable options and with the possibility of appending the ALES+ FFSAR output to the L1b products. In the future, these services will be extended and the following new services will be made available: the Aresys FF-SAR services for S-3 & Sentinel-6, the CLS SMAP S-3 FF-SAR processor (s-3--smap) and the ESA-ESTEC/isardSAT L1 Sentinel-6 Ground Prototype Processor. All output data products are generated in standard netCDF format, and are therefore also compatible with the multi-mission “Broadview Radar Altimetry Toolbox” (BRAT, http://www.altimetry.info).The SARvatore Services are being migrated from the ESA G-POD (https://gpod.eo.esa.int/) to the Altimetry Virtual Lab, a community space for simplified services access and knowledge-sharing. It will be hosted on EarthConsole (https://earthconsole.eu), a powerful EO data processing platform now also on the ESA Network of Resources. This enables SARvatore Services to remain open for worldwide scientific applications (info at altimetry.info@esa.int).
- Published
- 2022
- Full Text
- View/download PDF
11. SAR Altimetry Processing Over the Coastal Zone and Inland Water - the ESA HYDROCOASTAL Project
- Author
-
Jérôme Benveniste, David Cotton, and Hydrocoastal Team
- Abstract
HYDROCOASTAL is a two-year project funded by ESA, with the objective to maximise exploitation of SAR and SARin altimeter measurements in the coastal zone and inland water, by evaluating and implementing new approaches to process SAR and SARin data from CryoSat-2, and SAR altimeter data from Sentinel-3A and Sentinel-3B. Optical data from Sentinel-2 MSI and Sentinel-3 OLCI instruments will also be used in generating River Discharge products. New SAR and SARin processing algorithms for the coastal zone and inland waters will be developed and implemented and evaluated through an initial Test Data Set for selected regions. From the results of this evaluation a processing scheme will be implemented to generate global coastal zone and river discharge data sets. A series of case studies will assess these products in terms of their scientific impacts. All the produced data sets will be available on request to external researchers, and full descriptions of the processing algorithms will be provided.The scientific objectives of HYDROCOASTAL are to enhance our understanding of interactions between the inland water and coastal zone, between the coastal zone and the open ocean, and the small-scale processes that govern these interactions. Also, the project aims to improve our capability to characterize the variation at different time scales of inland water storage, exchanges with the ocean and the impact on regional sea-level changes.The technical objectives are to develop and evaluate new SAR and SARin altimetry processing techniques in support of the scientific objectives, including stack processing, and filtering, and retracking. Also, an improved Wet Troposphere Correction will be developed and evaluated.The presentation will describe the different SAR altimeter processing algorithms that are being evaluated in the first phase of the project, and present results from the evaluation of the initial test data set. It will focus particularly on the performance of the new algorithms over inland water.
- Published
- 2022
- Full Text
- View/download PDF
12. Guest Editorial: International Space Science Institute (ISSI) Workshop on Geohazards and Risks Studied from Earth Observations
- Author
-
Mioara Mandea, Jérôme Benveniste, A. A. Cazenave, and Teodolina Lopez
- Subjects
Geophysics ,Geochemistry and Petrology ,Environmental science ,Earth (chemistry) ,Space Science ,Astrobiology - Published
- 2020
- Full Text
- View/download PDF
13. Earth Observations for Coastal Hazards Monitoring and International Services: A European Perspective
- Author
-
Mioara Mandea, Pierric Ferrier, Jérôme Benveniste, and Angélique Melet
- Subjects
Earth observation ,Coastal hazards ,010504 meteorology & atmospheric sciences ,business.industry ,Environmental resource management ,Storm surge ,010502 geochemistry & geophysics ,01 natural sciences ,Geophysics ,Geochemistry and Petrology ,Coastal zone ,Environmental science ,Satellite ,Ground segment ,business ,0105 earth and related environmental sciences ,Copernicus ,Downstream (petroleum industry) - Abstract
This article aims to provide a tour of satellite missions for Coastal Hazards Monitoring, of relevant applications, as well as the downstream International Services such as the Copernicus Ocean and Land Monitoring Services. Earth observation (EO) satellite remote sensing provides global, repetitive and long-term observations with increasing resolution with every new generation of sensors. They permit the monitoring of small-scale signals like the ones impacting the coastal zone. EO missions are showcased in this article. Transforming the data products based on the satellite mission ground segment (usually called geophysical products, geophysical data records or so-called Level 2 products) into information useable by managers and decision-makers is done by downstream international services. This is an essential step to increase the uptake of satellite data for the benefit of society. Here, the type of services provided by, e.g., the European Copernicus Programme, is described along with examples of applications, such as monitoring storm surges.
- Published
- 2020
- Full Text
- View/download PDF
14. Monitoring the local heat content change over the Atlantic Ocean with the space geodetic approach: the 4DATLANTIC-OHC Project
- Author
-
Robin Fraudeau, Michael Ablain, Gilles Larnicol, Florence Marti, Victor Rousseau, Alejandro Blazquez, Benoit Meyssignac, Giuseppe Foti, Francisco Calafat, Damien Desbruyères, William Llovel, Pablo Ortega, Vladimir Lapin, Mar Rodriguez, Rachel Killick, Nick Rayner, Marie Drevillon, Karina von Schuckmann, Marco Restano, and Jérôme Benveniste
- Abstract
Given the major role of the Atlantic Ocean in the climate system, it is essential to characterize the temporal and spatial variations of its heat content. The 4DATLANTIC-OHC Project (https://eo4society.esa.int/projects/4datlantic-ohc/) aims at developing and testing space geodetic methods to estimate the local ocean heat content (OHC) changes over the Atlantic Ocean from satellite altimetry and gravimetry. The strategy developed in the frame of the ESA MOHeaCAN Project (https://eo4society.esa.int/projects/moheacan/) is pursued and refined at local scales both for the data generation and the uncertainty estimate. At two test sites, OHC derived from in situ data (RAPID and OVIDE-AR7W) are used to evaluate the accuracy and reliability of the new space geodetic based OHC change. The Atlantic OHC product will be used to better understand the complexity of the Earth’s climate system. In particular, the project aims at better understanding the role played by the Atlantic Meridional Overturning Circulation (AMOC) in regional and global climate change, and the variability of the Meridional Heat transport in the North Atlantic. In addition, improving our knowledge on the Atlantic OHC change will help to better assess the global ocean heat uptake and thus estimate the Earth’s energy imbalance more accurately as the oceans absorb about 90% of the excess energy stored by the Earth system.The objectives of the 4DATLANTIC-OHC Project will be presented. The scientific requirements and data used to generate the OHC change products over the Atlantic Ocean and the first results in terms of development will be detailed. At a later stage, early adopters are expected to assess the OHC products strengths and limitations for the implementation of new solutions for Society. The project started in June 2021 for a 2-year duration.Visit https://www.4datlantic-ohc.org to follow the main steps of the project.
- Published
- 2022
- Full Text
- View/download PDF
15. Satellite observations for runoff and river discharge estimation: STREAMRIDE approach
- Author
-
Stefania Camici, Angelica Tarpanelli, Luca Brocca, Christian Massari, Karina Nielsen, Nico Sneeuw, Mohammad J. Tourian, Shuang Yi, Marco Restano, and Jérôme Benveniste
- Abstract
River discharge monitoring is crucial for many activities ranging from the management of water resources to flood risk mitigation. Due to the limitations of the in situ stations (e.g., low station density, incomplete temporal coverage as well as delays in data access), the river discharge is not always continuously monitored in time and in space. This prompted researchers and space agencies, among others, in developing new methods based on satellite observations for the river discharge estimation.In the last decade, ESA has funded the SaTellite based Runoff Evaluation And Mapping and River Discharge Estimation (STREAMRIDE) project, which proposes the combination of two innovative and complementary approaches, STREAM and RIDESAT, for estimating river discharge. The innovative aspect of the two approaches is an almost exclusive use of satellite data. In particular, precipitation, soil moisture and terrestrial water storage observations are used within a simple and conceptual parsimonious approach (STREAM) to estimate runoff, whereas altimeter and Near InfraRed (NIR) sensors are jointly exploited to derive river discharge within RIDESAT. By modelling different processes that act at the basin or at local scale, the combination of STREAM and RIDESAT is able to provide less than 3-day temporal resolution river discharge estimates in many large rivers of the world (e.g., Mississippi, Amazon, Danube, Po), where the single approaches fail. Indeed, even if both the approaches demonstrated high capability to estimate accurate river discharge at multiple cross sections, they are not optimal under certain conditions such as in presence of densely vegetated and mountainous areas or in non-natural basins with high anthropogenic impact (i.e., in basin where the flow is regulated by the presence of dams, reservoirs or floodplains along the river; or in highly irrigated areas).Here, we present some new advancements of both STREAM and RIDESAT approaches which help to overcome the limitations encountered. In particular, specific modules (e.g., reservoir or irrigation modules for STREAM approach) as well as algorithm retrieval improvements (e.g., to take into account the sediment and the vegetation for RIDESAT algorithm) were implemented. Furthermore, in order to exploit the complementarity of the two approaches, the two river discharge estimates were also integrated within a simple data integration framework and evaluated over sites located on the Amazon and Mississippi river basins. Results demonstrated the added-value of a complementary river discharge estimate with respect to a stand-alone estimate.
- Published
- 2022
- Full Text
- View/download PDF
16. Monitoring the Ocean Heat Content and the Earth Energy imbalance from space altimetry and space gravimetry
- Author
-
Ablain, Michael, Florence, Marti, Alejandro, Blazquez, Benoit, Meyssignac, Robin, Fraudeau, Marco, Restano, Jérôme, Benveniste, and Gérald, Dibarboure
- Abstract
The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of energy in the climate system. While necessary to better understand the Earth’s warming climate, measuring the EEI is challenging as it is a globally integrated variable whose variations are small (0.5-1 W.m−2) compared to the amount of energy entering and leaving the climate system (~ 340 W.m-2). Accuracies better than 0.1 W.m−2 are needed to evaluate the temporal variations of the EEI at decadal and longer time-scales, characteristic of the response to anthropogenic and natural forcing. Since the ocean absorbs about 90% of the excess energy stored by the Earth system, estimating the ocean heat content (OHC) provides an accurate proxy of the EEI. Here, the OHC is estimated at global scale based on the combination of space altimetry and space gravimetry measurements. Changes in the EEI are derived with realistic estimates of its uncertainty. The mean EEI value is estimated at +0.74±0.22 W m-2 (90% confidence level) between August 2002 and August 2016 and this value is increasing at a rate of 0.02 ± 0.05 W.m-2 (90% confidence level). Comparisons against independent estimates based on Argo data and on CERES measurements show good agreement within the error bars of the global mean and the time variations in EEI. On the other hand, discrepancies are also detected at inter-annual scales indicating that the current accuracy of EEI needs further improvement at these time scales. Estimates of the regional OHC change are also provided preliminarily and will be improved in the following months with a focus on the Atlantic Ocean. In particular, the role of the halosteric effects will be further investigated and the resulting product will be assessed against hydrographic data. The space geodetic OHC-EEI product is freely available at https://doi.org/10.24400/527896/a01-2020.003.
- Published
- 2022
- Full Text
- View/download PDF
17. Improving SAR Altimeter processing over the coastal zone - the ESA HYDROCOASTAL project
- Author
-
David Cotton, Christine Gommenginger, Ole Andersen, Albert Garcia-Mondéjar, Karina Nielsen, Joana Fernandes, Clara Lazaro, Telmo Vieira, Luciana Fenoglio-Marc, Bernd Uebbing, Sophie Stolzenberger, Marcello Passaro, Denise Dettmering, Pierre Fabry, Stefano Vignudelli, Angelica Tarpanelli, Francesco de Biasio, Mathilde Cancet, Ergane Fouchet, Michele Scagliola, Andrew Shaw, Jesus Gomez-Enri, Cornelis Slobbe, Elena Zakharova, Jérôme Benveniste, Marco Restano, and Americo Ambrozio
- Published
- 2021
- Full Text
- View/download PDF
18. Improving SAR Altimeter processing over Inland Water - the ESA HYDROCOASTAL project
- Author
-
David Cotton, Albert Garcia-Mondéjar, Christine Gommenginger, Ole Andersen, Karina Nielsen, Luciana Fenoglio-Marc, Bernd Uebbing, Sophie Stolzenberger, Joana Fernandes, Clara Lazaro, Telmo Vieira, Peter Bauer-Gottwein, Stefano Vignudelli, Angelica Tarpanelli, Francesco de Biasio, Marcello Passaro, Denise Dettmering, Cornelis Slobbe, Andrew Shaw, Peter Thorne, Elena Zakharova, Michele Scagliola, Pierre Fabry, Jesus Gomez-Enri, Nicolas Bercher, Mathilde Cancet, Ergane Fouchet, Jérôme Benveniste, Marco Restano, and Americo Ambrozio
- Published
- 2021
- Full Text
- View/download PDF
19. Biomass Estimation by Means of Sentinel-3 Data: A Sensitivity Analysis
- Author
-
Marco Restano, Davide Comite, Jérôme Benveniste, Giuseppina De Felice-Proia, Nazzareno Pierdicca, Maria Paola Clarizia, and Leila Guerriero
- Subjects
Backscatter ,Radar altimeter ,law ,Ocean color ,C band ,Mode (statistics) ,Nadir ,Environmental science ,Altimeter ,Digital elevation model ,law.invention ,Remote sensing - Abstract
Sentinel-3 is a multi-instrument mission designed to measure sea-surface topography, sea- and land-surface temperature, ocean color and land color with high resolution and accuracy. The S3 mission is based on a constellation of two (3A and 3B) polar-orbiting satellites and it is designed and operated in the framework of the Copernicus programme, with planned 3C and 3D to ensure continuity. The mission builds up the legacy of ERS-1, ERS-2, ENVISAT and particularly CryoSat for the altimeter. Seninel-3A was launched in February 2016 and Seninel-3B in April 2018. They are equipped with a dual-frequency (Ku- and C-band) altimeter and can work both in low resolution (LRM) and SAR mode, the latter being designed to achieve high along-track discrimination. The low-resolution mode exploits conventional pulse-limited altimeter operation at C band. To approximate LRM operation at Ku band, a pseudo low-resolution mode is achieved by properly processing SAR acquisitions. Recently, a new research project funded by the European Space Agency, i.e., ALtimetry for BIOMass (ALBIOM), has been initiated to study the possibility of deriving forest biomass using Sentinel-3 altimetry data. ALBIOM aims at improving biomass global dataset, which is defined and classified as an Essential Climate Variable. In the last two decades, the exploitation of radar altimetry for studying land parameters has received renewed interest, including processing for the characterization of vegetation features and soil moisture. The vegetation cover has two main effects on the nadir backscatter measured by the altimeter. It attenuates the coherent reflection of the soil and add an incoherent volume scattering contribution. The relative weight of the two contributions depends of course form the frequency. To assess in what extent radar altimetry data are sensitive to the presence of vegetation forest, a study of the dynamic of the Sentinel-3 power waveforms with respect to the above ground biomass is needed. More importantly, the way radar waveforms are affected by disturbing land parameters, such as soil moisture, topography and surface roughness, has to be understood. In this work, an analysis considering both high- and low-resolution data made available by the Copernicus hub service is carried out. The sensitivity study of Sentinel-3 altimetry data to forest biomass over Africa is based on calibrated Sentinel-3 waveforms combined in space and time with forest biomass maps and ancillary information on the soil topography derived from a Digital Elevation Model. Comparison among Ku- and C-band waveforms are discussed, highlighting the critical aspect of the correct positioning of the time-tracking window over land, which often appears partly or completely misplaced, determining waveforms either truncated or containing noise only. The detrimental effect of the waveform truncation for the estimation of biomass and the possible mitigation approach has been considered. The study revealed that both waveforms and NRCSs can be sensitive to the presence of biomass in the order of 100-400 tons/ha, even if they can be strongly influenced by the presence of irregular topography within the system footprint. Different sensitivities with respect to the three channels (i.e., bandwidths and resolution modes) have been observed. A study about the use of differential NRCSs, defined as the difference between two different bandwidths, proposed by previous studies, is under investigation. Further research activities also connected to a modelling approach are in progress and will be discussed at the conference.
- Published
- 2021
- Full Text
- View/download PDF
20. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry
- Author
-
Rémi Jugier, Jérôme Benveniste, Anne Barnoud, Julia Pfeffer, Gilles Larnicol, Jonathan Chenal, Robin Fraudeau, Alejandro Blazquez, Benoit Meyssignac, Florence Marti, Marco Restano, Michael Ablain, Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
QE1-996.5 ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Geodetic datum ,Geology ,Atmospheric sciences ,Environmental sciences ,Earth system science ,Atmosphere ,[SDU]Sciences of the Universe [physics] ,General Earth and Planetary Sciences ,Environmental science ,GE1-350 ,Altimeter ,Gravimetry ,Ocean heat content ,Proxy (statistics) ,Argo - Abstract
The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of heat in the climate system. Monitoring the EEI is therefore necessary to better understand the Earth's warming climate. Measuring the EEI is challenging as it is a globally integrated variable whose variations are small (0.5–1 W m−2) compared to the amount of energy entering and leaving the climate system (∼340 W m−2). Since the ocean absorbs more than 90 % of the excess energy stored by the Earth system, estimating the ocean heat content (OHC) change provides an accurate proxy of the EEI. This study provides a space geodetic estimation of the OHC changes at global and regional scales based on the combination of space altimetry and space gravimetry measurements. From this estimate, the global variations in the EEI are derived with realistic estimates of its uncertainty. The mean EEI value is estimated at +0.74±0.22 W m−2 (90 % confidence level) between August 2002 and August 2016. Comparisons against estimates based on Argo data and on CERES measurements show good agreement within the error bars of the global mean and the time variations in EEI. Further improvements are needed to reduce uncertainties and to improve the time series, especially at interannual timescales. The space geodetic OHC-EEI product (version 2.1) is freely available at https://doi.org/10.24400/527896/a01-2020.003 (Magellium/LEGOS, 2020).
- Published
- 2021
- Full Text
- View/download PDF
21. Estimating Biomass From Sentinel-3 Altimetry Data: A Sensitivity Analysis
- Author
-
Marco Restano, G. De Felice Proia, Davide Comite, Cristina Vittucci, Maria Paola Clarizia, Leila Guerriero, Daniel Pascual, Jérôme Benveniste, and Nazzareno Pierdicca
- Subjects
Footprint ,Biomass (ecology) ,Radar tracker ,C band ,law ,Environmental science ,Normalized radar cross section ,Altimeter ,Sensitivity (control systems) ,Radar ,law.invention ,Remote sensing - Abstract
ALtimetry for BIOMass (ALBIOM) is a research project funded by the European Space Agency to study the possibility of estimating above ground biomass by means of low- and high-resolution Sentinel-3 altimetry data. We present preliminary results of a sensitivity analysis, developed to assess in what extent waveforms and altimetry observables are affected by the presence of forests. Ku- and C-band altimetry data have been collected and processed to properly select well-tracked waveforms over land, which are then related to collocated biomass data. A statistical analysis has been performed, highlighting a sensitivity of the estimated normalized radar cross section with respect to forest biomass, even though it is strongly disturbed by the soil topography within the radar footprint. Additionally, the inaccurate positioning of the time-tracking window limits the number of useful data.
- Published
- 2021
- Full Text
- View/download PDF
22. Corrigendum to 'Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea' [Adv. Space Res. 62 (2018) 1371–1404]
- Author
-
Remko Scharroo, Salvatore Dinardo, Matthias Becker, Christopher Buchhaupt, M. Joana Fernandes, Jérôme Benveniste, and Luciana Fenoglio-Marc
- Subjects
Atmospheric Science ,Geophysics ,Oceanography ,Baltic sea ,Space and Planetary Science ,Aerospace Engineering ,General Earth and Planetary Sciences ,German bight ,Astronomy and Astrophysics ,Altimeter ,Geology - Published
- 2020
- Full Text
- View/download PDF
23. Sentinel-3 Delay-Doppler altimetry over Antarctica
- Author
-
Marco Restano, Andrew Shepherd, Pierre Thibaut, Jérôme Benveniste, Monica Roca, Alan Muir, Malcolm McMillan, Américo Ambrózio, Jérémie Aublanc, and Roger Escolà
- Subjects
Accuracy and precision ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,Antarctic ice sheet ,02 engineering and technology ,01 natural sciences ,Operational system ,symbols.namesake ,Subglacial lake ,Altimeter ,lcsh:Environmental sciences ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,lcsh:QE1-996.5 ,Elevation ,Geodesy ,lcsh:Geology ,symbols ,Ice sheet ,Doppler effect ,Geology - Abstract
The launch of Sentinel-3A in February 2016 represented the beginning of a new long-term series of operational satellite radar altimeters, which will provide Delay-Doppler altimetry measurements over ice sheets for decades to come. Given the potential benefits that these satellites can offer to a range of glaciological applications, it is important to establish their capacity to monitor ice sheet elevation and elevation change. Here, we present the first analysis of Sentinel-3 Delay-Doppler altimetry over the Antarctic ice sheet, and assess the accuracy and precision of retrievals of ice sheet elevation across a range of topographic regimes. Over the low-slope regions of the ice sheet interior, we find that the instrument achieves both an accuracy and a precision of the order of 10 cm, with ∼98 % of the data validated being within 50 cm of co-located airborne measurements. Across the steeper and more complex topography of the ice sheet margin, the accuracy decreases, although analysis at two coastal sites with densely surveyed airborne campaigns shows that ∼60 %–85 % of validated data are still within 1 m of co-located airborne elevation measurements. We then explore the utility of the Sentinel-3A Delay-Doppler altimeter for mapping ice sheet elevation change. We show that with only 2 years of available data, it is possible to resolve known signals of ice dynamic imbalance and to detect evidence of subglacial lake drainage activity. Our analysis demonstrates a new, long-term source of measurements of ice sheet elevation and elevation change, and the early potential of this operational system for monitoring ice sheet imbalance for decades to come.
- Published
- 2019
- Full Text
- View/download PDF
24. Global sea-level budget and ocean-mass budget, with focus on advanced data products and uncertainty characterisation
- Author
-
S. K. Rose, Hannes Müller Schmied, Marco Restano, Anna E. Hogg, Johnny A. Johannessen, Frank Paul, Louise Sandberg Sørensen, Claire Macintosh, Heidi Randall, Christopher J. Merchant, Ben Marzeion, Hindumathi Palanisamy, K. Novotny, Karina von Schuckmann, Raymond Le Bris, Andreas Groh, Valentina R. Barletta, Jan Even Øie Nilsen, Benjamin D. Gutknecht, Petra Döll, Andrew Shepherd, Sebastian B. Simonsen, Per Knudsen, René Forsberg, Denise Cáceres, Martin Horwath, Jérôme Benveniste, Roshin P. Raj, Ole Baltazar Andersen, Anny Cazenave, Ines Otosaka, and Florence Marti
- Subjects
Drifter ,Sea surface temperature ,geography ,geography.geographical_feature_category ,Climatology ,Greenland ice sheet ,Environmental science ,Climate change ,Antarctic ice sheet ,Glacier ,Sea level ,Argo - Abstract
Studies of the global sea-level budget (SLB) and the global ocean-mass budget (OMB) are essential to assess the reliability of our knowledge of sea-level change and its contributions. Here we present datasets for times series of the SLB and OMB elements developed in the framework of ESA's Climate Change Initiative. We use these datasets to assess the SLB and the OMB simultaneously, utilising a consistent framework of uncertainty characterisation. The time series, given at monthly sampling, include global mean sea-level (GMSL) anomalies from satellite altimetry; the global mean steric component from Argo drifter data with incorporation of sea surface temperature data; the ocean mass component from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry; the contribution from global glacier mass changes assessed by a global glacier model; the contribution from Greenland Ice Sheet and Antarctic Ice Sheet mass changes, assessed from satellite radar altimetry and from GRACE; and the contribution from land water storage anomalies assessed by the WaterGAP global hydrological model. Over the period Jan 1993–Dec 2016 (P1, covered by the satellite altimetry records), the mean rate (linear trend) of GMSL is 3.05 ± 0.24 mm yr−1. The steric component is 1.15 ± 0.12 mm yr−1 (38 % of the GMSL trend) and the mass component is 1.75 ± 0.12 mm yr−1 (57 %). The mass component includes 0.64 ± 0.03 mm yr−1 (21 % of the GMSL trend) from glaciers outside Greenland and Antarctica, 0.60 ± 0.04 mm yr−1 (20 %) from Greenland, 0.19 ± 0.04 mm yr−1 (6 %) from Antarctica, and 0.32 ± 0.10 mm yr−1 (10 %) from changes of land water storage. In the period Jan 2003–Aug 2016 (P2, covered by GRACE and the Argo drifter system), GMSL rise is higher than in P1 at 3.64 ± 0.26 mm yr−1. This is due to an increase of the mass contributions (now about 2.22 ± 0.15 mm yr−1, 61 % of the GMSL trend), with the largest increase contributed from Greenland. The SLB of linear trends is closed for P1 and P2, that is, the GMSL trend agrees with the sum of the steric and mass components within their combined uncertainties. The OMB budget, which can be evaluated only for P2, is also closed, that is, the GRACE-based ocean-mass trend agrees with the sum of assessed mass contributions within uncertainties. Combined uncertainties (1-sigma) of the elements involved in the budgets are between 0.26 and 0.40 mm yr−1, about 10 % of GMSL rise. Interannual variations that overlie the long-term trends are coherently represented by the elements of the SLB and the OMB. Even at the level of monthly anomalies the budgets are closed within uncertainties, while also indicating possible origins of remaining misclosures.
- Published
- 2021
- Full Text
- View/download PDF
25. NorthSEAL: A new Dataset of Sea Level Changes in the North Sea from Satellite Altimetry
- Author
-
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
- Abstract
Information on sea level and its temporal and spatial variability is of great importance for various scientific, societal and economic issues. This article reports about a new sea level dataset for the North Sea (named NorthSEAL) of monthly sea level anomalies (SLA), absolute sea level trends and sea level mean annual amplitudes over the period 1995–2019. Uncertainties and quality flags are provided together with the data. The dataset has been created from multi-mission cross-calibrated altimetry data, preprocessed 5 with coastal dedicated approaches and gridded with innovative methods to a 6–8 km wide triangular mesh. The comparison of SLA and tide gauge time series shows a good consistency with average correlations of 0.85 and maximum correlations of 0.93. The improvement with respect to existing global gridded altimetry solutions amounts to 8–10 %, and it is most pronounced in complicated coastal environments such as river mouths or regions sheltered by islands. The differences in trends at tide gauge locations depend on the vertical land motion model used to correct relative sea level trends. The best 10 consistency with a median difference of 0.04 ± 1.15 mm/year is reached by applying a recent glacial isostatic adjustment (GIA) model. With the presented sea level dataset, for the first time, a regionally optimized product for the entire North Sea is made available. It will enable further investigations of ocean processes, sea level projections and studies on coastal adaptation measures. The NorthSEAL data is available at https://doi.org/10.17882/79673 (Müller et al., 2021).
- Published
- 2021
- Full Text
- View/download PDF
26. SAR, SARin, RDSAR and FF-SAR Altimetry Processing on Demand for CryoSat-2 and Sentinel-3 at ESA G-POD
- Author
-
Luciana Fenoglio-Marc, G. Sabatino, Jérôme Benveniste, Marcello Passaro, Marco Restano, Américo Ambrózio, Salvatore Dinardo, Michele Scagliola, and Christopher Buchhaupt
- Subjects
Sarin ,chemistry.chemical_compound ,Point of delivery ,chemistry ,On demand ,Environmental science ,Altimeter ,Remote sensing - Abstract
The scope of this presentation is to feature and provide an update on the ESA G-POD/SARvatore family of altimetry services portfolio for the exploitation of CryoSat-2 and Sentinel-3 data from L1A (FBR) data products up to SAR/SARin Level-2 geophysical data products. At present, the following on-line & on-demand services compose the portfolio:- The SARvatore (SAR Versatile Altimetric TOolkit for Research & Exploitation) for CryoSat-2 and Sentinel-3 services developed by the Altimetry Team in the R&D division at ESA-ESRIN. These processor prototypes are versatile and allow the users to customize and adapt the processing at L1b & L2 according to their specific requirements by setting a list of configurable options. The scope is to provide users with specific processing options not available in the operational processing chains (e.g. range walk correction, stack sub-setting, extended receiving window, zero padding, high-posting rate and burst weighting at L1b & SAMOSA+, SAMOSA++ and ALES+ SAR retrackers at L2). AJoin & Share Forum (https://wiki.services.eoportal.org/tiki-custom_home.php) allows users to post questions and report issues. A data repository is also available to the Community to avoid the redundant reprocessing of already processed data (https://wiki.services.eoportal.org/tiki-index.php?page=SARvatore+Data+Repository&highlight=repository).- The TUDaBo SAR-RDSAR (Technical University Darmstadt – University Bonn SAR-Reduced SAR) for CryoSat-2 and Sentinel-3 service. It allows users to generate reduced SAR, unfocused SAR & LRMC data. Several configurable L1b & L2 processing options and retrackers (BMLE3, SINC2, TALES, SINCS) are available. The processor will be extended during an additional activity related to the ESA HYDROCOASTAL Project (https://www.satoc.eu/projects/hydrocoastal/) to account in the open ocean for the vertical motion of the wave particles (VMWP) in unfocused SAR and in a simplified form of the fully focused SAR called here Low Resolution Range Cell Migration Correction-Focused (LRMC-F). - The ALES+ SAR for CryoSat-2 and Sentinel-3 service. It allows users to process official L1b data and produces L2 NetCDF products by applying the empirical ALES+ SAR subwaveform retracker, including a dedicated SSB solution, developed by the Technische Universität München in the frame of the ESA Sea Level CCI (http://www.esa-sealevel-cci.org/) & BALTIC+ SEAL Projects (http://balticseal.eu/).- The Aresys Fully Focused SAR for CryoSat-2 service. Currently under development, it will provide the capability to produce CS-2 FF-SAR L1b products thanks to the Aresys 2D transformed frequency domain AREALT-FF1 processor prototype. Output products will also include geophysical corrections and threshold peak & ALES-like subwaveform retracker estimates.The G-POD graphical interface allows users to select, in all the services, a geographical area of interest within the time-frame related to the L1A (FBR) & L1b data products availability in the service catalogue. After the task submission, users can follow, in real time, the status of the processing. The output data products are generated in standard NetCDF format, therefore being compatible with the multi-mission “Broadview Radar Altimetry Toolbox” (BRAT, http://www.altimetry.info) and typical tools.Services are open, free of charge (supported by ESA) for worldwide scientific applications and available, after registration and activation (to be requested for each chosen service to eo-gpod@esa.int), at https://gpod.eo.esa.int.
- Published
- 2021
- Full Text
- View/download PDF
27. CryoSat-2’s contribution to the complete sea level records from the Polar Oceans
- Author
-
Jérôme Benveniste, Sara Fleury, Carsten Ankjær Ludwigsen, Ole Baltazar Andersen, Stine Kildegaard Rose, Salvatore Dinardo, Michel Tsamados, and Jerome Bouffard
- Subjects
Oceanography ,Polar ,Geology ,Sea level - Published
- 2021
- Full Text
- View/download PDF
28. Coastal sea level changes in Africa from retracked Jason altimetry over 2002-2020
- Author
-
Anny Cazenave, Francisco M. Calafat, Fernando Niño, Yvan Gouzenes, Jean-François Legeais, Florence Birol, Jérôme Benveniste, Fabien Léger, Marcello Passaro, and Andy Shaw
- Subjects
Oceanography ,Altimeter ,Geology ,Coastal sea - Abstract
Climate-related sea level changes in the world coastal zones result from the superposition of the global mean rise due to ocean warming and land ice melt, regional changes mostly caused by non-uniform ocean thermal expansion and salinity changes, and small-scale coastal processes (e.g., shelf currents, wind & waves changes, fresh water input from rivers, etc.). So far, satellite altimetry has provided global gridded sea level time series up to 10-15 km to the coast only, preventing estimation of sea level changes very close to the coast. In the context of the ESA Climate Change Initiative coastal sea level project, we have developed a complete reprocessing of high-resolution (20 Hz) Jason-1, 2 and 3 altimetry data along the world coastal zones using the ALES (Adaptative Leading Edge Subwaveform) retracker combined with the XTRACK system dedicated to improve geophysical corrections at the coast. Here we present coastal sea level trends over the period 2002-2020 along the whole African continent. Different coastal sea level trend behaviors are observed over the study period. We compare the computed coastal trends in Africa with results we previously obtained in other regions (Mediterranean Sea, Northeastern Europe, north Indian Sea, southeast Asia and Australia).
- Published
- 2021
- Full Text
- View/download PDF
29. Global runoff estimation through a regionalized STREAM model
- Author
-
Gabriele Giuliani, Jérôme Benveniste, Angelica Tarpanelli, Marco Restano, Christian Massari, Stefania Camici, and Luca Brocca
- Subjects
Hydrology ,Estimation ,Environmental science ,Surface runoff - Abstract
STREAM -SaTellite based Runoff Evaluation And Mapping- is a conceptual hydrological model able to derive daily river discharge and runoff estimates from satellite soil moisture, precipitation and terrestrial water storage anomalies observations. The model is very simple and versatile: It requires a limited number of parameters (only eight) to simulate river discharge.The model simulates river discharge and gridded runoff at daily time scale with a 25 km spatial resolution. Forced by TRMM 3B42 rainfall data and ESA CCI soil moisture data and GRACE over five pilot large basins (Mississippi, Amazon, Niger, Danube and Murray Darling) the model already provided good runoff estimates especially over Amazon basin, with a Kling-Gupta efficiency (KGE) index greater than 0.92 both at the basin outlet and over several inner stations in the basin. Good results have been also obtained for Mississippi, Niger and Danube with KGE index greater than 0.75 for all the gauging stations.By considering the good performances of the STREAM model and by the continuous availability (in space and time) of satellite observations, this work presents an attempt to regionalize the STREAM model parameters. The Mississippi river basin has been taken as case study and specific relationships between model parameters and different predictors (climate variables such as precipitation and evaporation, soil vegetation and topography characteristics) have been developed. By using these relationships, STREAM parameter values have been directly obtained from readily available climatic and physiographic basin characteristics and model performances are still satisfactory (median KGE over the basin equal to 0.60). The capability to use these relationships in other hydrologically similar catchments will be investigated for the Danube and Amazon river basins. The final target is to obtain global relationships as to provide to provide daily, 25 km, global runoff maps from the STREAM approach.
- Published
- 2021
- Full Text
- View/download PDF
30. Recent Results from the ALBIOM Project on Biomass Estimates from Sentinel-3 Altimetry Data
- Author
-
Leila Guerriero, Marco Restano, Cristina Vittucci, Nazzareno Pierdicca, Maria Paola Clarizia, Daniel Pascual, Giuseppina De Felice-Proia, Davide Comite, and Jérôme Benveniste
- Subjects
Environmental science ,Biomass ,Altimeter ,Atmospheric sciences - Abstract
The ALtimetry for BIOMass (ALBIOM) project is an ESA-funded Permanent Open Call Project that aims to retrieve forest biomass using Copernicus Sentinel-3 (S3) altimeter data. The overall goal of ALBIOM is to estimate biomass with sufficient accuracy to be able to increase existing satellite data for biomass retrieval, as well as to improve the global mapping and monitoring of this fundamental variable. The project core tasks consist of 1) an analysis of the sensitivity of altimetry backscatter data on land parameters; 2) the development and validation of a Sentinel-3 altimeter backscatter simulator, including the effect of both topography and vegetation and 3) the development and validation of a machine-learning biomass estimation algorithm.Here we present a summary of the results obtained from the project. The sensitivity analysis reveals that both the altimetric waveforms and the corresponding Normalised Radar Cross Sections (NRCSs) can be sensitive to the presence of biomass in the order of 100-400 tons/ha, but they are also influenced by topography and water bodies. Different sensitivities with respect to the different frequencies and resolution modes are observed, highlighting non-linear behaviours of the NRCSs. The use of differential NRCSs, defined as the difference among those calculated over two different bandwidths, was demonstrated to be not necessarily more sensitive to vegetation, as it was instead highlighted by previous studies like [Papa et al., 2003].The tracking window often appears partly or completely misplaced, when the tracking mode is in open-loop mode prescribing a predetermined range, and its size is often not long enough when collecting data over land, especially over regions with complex topography. The length and correct positioning of the tracking window over land represent therefore critical aspects for a study like ALBIOM.The modelling work has been focused on the development of a merged model approach to simulate altimeter waveforms over vegetated areas. The merging is obtained via the simultaneous use of the modifiedTor Vergata Scattering Model (TOVSM) [Ferrazzoli and Guerriero, 1995, 1996] to simulate the waveform of a flat surface covered by forest vegetation, and the use of the Soil And Vegetation Reflection Simulator (SAVERS) [Pierdicca et al., 2014], originally conceived for GNSS-Reflectometry, and here adapted to the Altimetry system. The simulator developed within ALBIOM shows promising ability to reproduce the general characteristics of the S3 waveforms. The simulations related to forested surfaces present at least two peaks, due to the top of canopy and to the ground, but the presence of topography may introduce other peaks in the waveforms, making the identification of vegetation and topographic effects challenging.Initial results on the algorithm development using Artificial Neural Networks (ANN) highlight some promising biomass estimates over specific areas (e.g. Central Africa) but also differences in algorithm performances among different regions. The corrected “ice” backscatter coefficient showed the highest sensitivity to biomass, but its values are often invalid over land, which limits the number of meaningful retrievals. The different altimeter tracking mode of Sentinel-3 over different areas of the globe (i.e., open loop and closed loop) could also be responsible for the differences in results.
- Published
- 2021
- Full Text
- View/download PDF
31. Local sea level trends, accelerations and uncertainties over 1993-2019
- Author
-
Pierre Prandi, Giorgio Spada, Benoit Meyssignac, Michael Ablain, Aurélien Ribes, Jean-François Legeais, and Jérôme Benveniste
- Subjects
Climatology ,Environmental science ,Sea level - Abstract
Satellite altimetry missions provide a quasi-global synoptic view of sea level variations over more than 25 years and provide regional sea level (SL) indicators such as trends and accelerations. Estimating realistic uncertainties on these quantities is crucial to address current climate science questions. While uncertainty estimates are available for the global mean sea level (GMSL), information is not available at local scales so far. We estimate a local satellite altimetry error budget and use it to derive local error variance-covariance matrices, and estimate confidence intervals on trends and accelerations at the 90% confidence level. Over 1993–2019, we find that the average local sea level trend uncertainty is 0.83 mm.yr−1 with values ranging from 0.78 to 1.22 mm.yr−1. For accelerations, uncertainties range from 0.057 to 0.12 mm.yr−2, with a mean value of 0.062. We also perform a sensitivity study to investigate a range of plausible error budgets.A dataset consisiting of a single NetCDF file containing local error levels, error variance-covariance matrices, SL trends and accelerations, along with corresponding uncertainties is provided (https://doi.org/10.17882/74862). Code to reproduce the study is also distributed (https://github.com/pierre-prandi/rsl). With this information, users should be able to reuse these error levels to derive uncertainties on any metric (e.g. inter annual variability) or time period.
- Published
- 2021
- Full Text
- View/download PDF
32. Preface: 25 years of progress in radar altimetry
- Author
-
Pascal Bonnefond and Jérôme Benveniste
- Subjects
Atmospheric Science ,Geophysics ,Space and Planetary Science ,Aerospace Engineering ,General Earth and Planetary Sciences ,Astronomy and Astrophysics ,Geology ,Radar altimetry ,Remote sensing - Published
- 2021
- Full Text
- View/download PDF
33. 12th COASTAL ALTIMETRY WORKSHOP Summary and Recommendations Executive Brief
- Author
-
Stefano Vignudelli, o Esa-Esrin, Marco Restano, Cnr, Esa-Esrin, Serco c, Marcello Passaro, Tum, and Jérôme Benveniste
- Subjects
business.industry ,Environmental resource management ,business - Published
- 2020
- Full Text
- View/download PDF
34. 12th COASTAL ALTIMETRY WORKSHOP FINAL REPORT
- Author
-
Marco Restano, Stefano Vignudelli, Marcello Passaro, and Jérôme Benveniste
- Subjects
Climatology ,Altimeter - Published
- 2020
- Full Text
- View/download PDF
35. A new project to monitor the Ocean Heat Content and the Earth Energy imbalance from space: MOHeaCAN
- Author
-
Rémi Jugier, Benoit Meyssignac, Marti Florence, Jérôme Benveniste, Alejandro Blazquez, and Michael Ablain
- Subjects
Meteorology ,Environmental science ,Ocean heat content ,Space (mathematics) ,Energy (signal processing) ,Earth (classical element) - Abstract
The Earth Energy Imbalance (EEI) is a key indicator to understand the Earth’s changing. However, measuring this indicator is challenging since it is a globally integrated variable whose variations are small, of the order of several tenth of W.m-2, compared to the amount of energy entering and leaving the climate system of ~340 W.m-2. Recent studies suggest that the EEI response to anthropogenic GHG and aerosols emissions is 0.5-1 W.m-2. It implies that an accuracy of the direct measurement of in situ temperature based on temperature/Salinity profiles (e.g. ARGO floats), the measurement of the net ocean surface heat fluxes from space (CERES), the estimate from ocean reanalyses that assimilate observations from both satellite and in situ instruments, the measurement of the thermal expansion of the ocean from space based on differences between the total sea-level content derived from altimetry measurements and the mass content derived from GRACE data (noted “Altimetry-GRACE”). To date, the best results are given by the first method based on ARGO network. However ARGO measurements do no sample deep ocean below 2000 m depth and marginal seas as well as the ocean below sea ice. Re-analysis provides a more complete estimation but large biases in the polar oceans and spurious drifts in the deep ocean mask a significant part of the OHC signal related to EEI. The method based on estimation of ocean net heat fluxes (CERES) is not appropriate for OHC calculation due to a too strong uncertainty (±15 W.m-2). In the MOHeaCAN project supported by ESA, we are being developed the “Altimetry-GRACE” approach which is promising since it provides consistent spatial and temporal sampling of the ocean, it samples the entire global ocean, except for polar regions, and it provides estimates of the OHC over the ocean’s entire depth. Consequently, it complements the OHC estimation from ARGO. However, to date the uncertainty in OHC from this method is close to 0.5 W.m-2, and thus greater than the requirement of 0.3 W.m-2 needed to a good EEI estimation. Therefore the scientific objective of the MOHeaCan project is to improve these estimates :by developing novel algorithms in order to reach the challenging target for the uncertainty quantification of 0.3 W. m−2; by estimating realistic OHC uncertainties thanks to an error budget of measurements applying a rigorous mathematical formalism; by developing a software prototype systems that allow to perform sensitivities studies and OHC product and its uncertainty generation; by assessing our estimation by performing comparison against independent estimates based on ARGO network, and based on the Clouds and the Earth’s Radiant energy System (CERES) measurements at the top of the atmosphere.
- Published
- 2020
- Full Text
- View/download PDF
36. An observation-based approach for global runoff estimation: exploiting satellite soil moisture and Grace
- Author
-
Stefania Camici, Gabriele Giuliani, Hassan Hashemi Farahani, Marco Restano, Nico Sneeuw, Jérôme Benveniste, Luca Brocca, and Christian Massari
- Subjects
Estimation ,Meteorology ,Environmental science ,Satellite ,Surface runoff ,Water content - Abstract
Water is at the centre of economic and social development; it is vital to maintain health, grow food, manage the environment, produce renewable energy, support industrial processes and create jobs. Despite the importance of water, to date over one third of the world's population still lacks access to drinking water resources and this number is expected to increase due to climate change and outdated water management. As over half of the world’s potable water supply is extracted from rivers, either directly or from reservoirs, understanding the variability of the stored water on and below landmasses, i.e., runoff, is of primary importance. Apart from river discharge observation networks that suffer from many known limitations (e.g., low station density and often incomplete temporal coverage, substantial delay in data access and large decline in monitoring capacity), runoff can be estimated through model-based or observation-based approaches whose outputs can be highly model or data dependent and characterised by large uncertainties. On this basis, developing innovative methods able to maximize the recovery of information on runoff contained in current satellite observations of climatic and environmental variables (i.e., precipitation, soil moisture, terrestrial water storage anomalies and land cover) becomes mandatory and urgent. In this respect, within the European Space Agency (ESA) STREAM Project (SaTellite based Runoff Evaluation And Mapping), a solid “observational” approach, exploiting space-only observations of Precipitation (P), Soil Moisture (SM) and Terrestrial Water Storage Anomalies (TWSA) to derive total runoff has been developed and validated. Different P and SM products have been considered. For P, both in situ and satellite-based (e.g., Tropical Rainfall Measuring Mission, TRMM 3B42) datasets have been collected; for SM, Advanced SCATterometer, ASCAT, and ESA Climate Change Initiative, ESA CCI, soil moisture products have been extracted. TWSA time series are obtained from the latest Goddard Space Flight Center’s global mascon model, which provides storage anomalies and their uncertainties in the form of monthly surface mass densities per approximately 1°x1° blocks. Total runoff estimates have been simulated for the period 2003-2017 at 5 pilot basins across the world (Mississippi, Amazon, Niger, Danube and Murray Darling) characterised by different physiographic/climatic features. Results proved the potentiality of satellite observations to estimate runoff at daily time scale and at spatial resolution better than GRACE spatial sampling. In particular, by using satellite TRMM 3B42 rainfall data and ESA CCI soil moisture data, very good runoff estimates have been obtained over Amazon basin, with a Kling-Gupta efficiency (KGE) index greater than 0.92 both at the closure and over several inner stations in the basin. Good results found for Mississippi and Danube are also encouraging with KGE index greater than 0.75 for both the basins.
- Published
- 2020
- Full Text
- View/download PDF
37. A Robust Error Characterization Method for SAR Altimetry over the Inland Water Domain
- Author
-
Martina Wenzl, Marco Restano, and Jérôme Benveniste
- Subjects
Altimeter ,Geology ,Domain (software engineering) ,Remote sensing ,Characterization (materials science) - Abstract
The advent of SAR (delay-Doppler) altimetry allowed the production of data with a high spatial resolution (300 m along-track). Investigations in the inland water domain clearly benefited from SAR data and future processing strategies (e.g. the fully-focused SAR, FF-SAR) are expected to improve further the quantity of data points over water bodies of a reduced size.The proposed work aims at investigating the quality of Sentinel-3 water level retrievals over three targets of different characteristics: the Ohio River, the Columbia River and the Great Salt Lake. Data are processed through the ESA G-POD SARvatore online and on-demand processing service for the exploitation of CryoSat-2 and Sentinel-3 data (https://gpod.eo.esa.int/services/SENTINEL3_SAR/) and obtained by using the SAMOSA2, SAMOSA+ & SAMOSA++ retrackers. The selected posting rate of measurements is 80 Hz to optimize the location of data points over the Ohio and Columbia River (an estimate every 80 m along-track), however a comparison with the 20 Hz posting rate is being made. Empirical retrackers outputs, available in the official 20 Hz Sentinel-3 LAN products, are also considered for comparison and water masks from (Pekel et al., 2016) are used to select data points acquired over water bodies.The main goal of this study is to analyse the key parameters characterizing both the L1b SAR waveform and the retracking (e.g. the Pulse Peakiness, the Misfit…) to define a robust error characterization method that is expected to filter out an increased number of outliers. A validation exercise using in situ data will be presented to demonstrate that the proposed method leads to the definition of a reduced, highly reliable dataset, associated with a realistic error characterization model.The study is expected to unlock possible synergies with SWOT and support the comparison of SAR estimates to FF-SAR estimates obtained at a comparable along-track resolution.
- Published
- 2020
- Full Text
- View/download PDF
38. Satellite Altimetry over River Basins - Beyond Water Heights
- Author
-
Jérôme Benveniste and Philippa Berry
- Subjects
geography ,geography.geographical_feature_category ,Climatology ,Satellite altimetry ,Drainage basin ,Geology - Abstract
The unique contribution of satellite radar altimetry to river monitoring is well understood, with ‘ altimeter virtual gauge’ heights increasingly ingested into river basin models. However, altimeters gather a wealth of additional information. Waveform shapes reflect underlying topographic variation, surface composition and roughness, and distribution of surface water within the footprint. Backscatter measurements allow soil surface moisture under the satellite track to be determined, using DRy EArth ModelS (DREAMS) crafted from multi-mission altimeter data and ground truth. Initially developed over desert areas, DREAMs are now being built over river basins to extend the scope of altimeter soil moisture measurement.This paper investigates the potential contribution of these additional data to river basin analysis and modelling. The following key questions are addressed. 1) How useful are the data encoded in complex waveform shapes? 2) Can altimeter soil moisture estimates contribute to modelling in river basins?A series of example river basins were chosen in different topographic and climate situations, including the Amazon, Orinoco, Nile, Niger and Congo basins, and wetlands including the Okavango delta.This paper presents outcomes from analysis of multi-mission altimetry, with ERS-1/2, Envisat, Topex, Jason-1/2, Cryosat-2 and Sentinel-3A/B, plus a database of over 86,000 river and lake timeseries.The analysis outcomes demonstrate the value of altimeter soil surface moisture estimates, both as co-temporal and co-spatial data with inland water height measurements, and as an independent validation dataset to assess soil moisture estimates derived from other remote sensing techniques. The precise backscatter cross-calibration of altimeters on successive missions allows derivation of long soil moisture time series. The ability of nadir-pointing altimeters to penetrate vegetation canopy gives a unique perspective in rainforest areas, with information on underlying water height and extent as well as surface soil moisture. Waveform shape classification allows diverse information to be gleaned, particularly at the higher pulse repetition frequencies of the new generation of SAR Altimeters. In conclusion, satellite radar altimeters collect a wealth of information over river basins; this valuable resource is not yet fully exploited.
- Published
- 2020
- Full Text
- View/download PDF
39. SAR and SARin Altimetry Processing on Demand for Cryosat-2 and Sentinel-3 at ESA G-POD
- Author
-
G. Sabatino, Marco Restano, Jérôme Benveniste, Salvatore Dinardo, and Américo Ambrózio
- Subjects
Sarin ,chemistry.chemical_compound ,Point of delivery ,chemistry ,On demand ,Environmental science ,Altimeter ,Remote sensing - Abstract
The scope of this presentation is to feature the G-POD SARvatore service to users for the exploitation of CryoSat-2 and Sentinel-3 data, which was designed and developed by the Altimetry Team in the R&D division at ESA-ESRIN. The G-POD service coined SARvatore (SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation) is a web platform that allows any scientist to process on-line, on-demand and with user-selectable configuration CryoSat-2 SAR/SARin and Sentinel-3 SAR data, from L1A (FBR) data products up to SAR/SARin Level-2 geophysical data products. The G-POD graphical interface allows users to select a geographical area of interest within the time-frame related to the Cryosat-2 SAR/SARin FBR and Sentinel-3 L1A data products availability in the service catalogue. The processor prototype is versatile, allowing users to customize and to adapt the processing according to their specific requirements by setting a list of configurable options. Pre-defined processing configurations (Official CryoSat-2, Official Sentinel-3, Open Ocean, Coastal Zone, Inland Water (20Hz & 80Hz), Ice and Sea-Ice) are available. After the task submission, users can follow, in real time, the status of the processing. The output data products are generated in standard NetCDF format, therefore being compatible with the multi-mission “Broadview Radar Altimetry Toolbox” (BRAT, http://www.altimetry.info) and typical tools.Initially, the processing was designed and optimized uniquely for open ocean studies. It was based on the SAMOSA model developed for the Sentinel-3 Ground Segment. However, since June 2015, the SAMOSA+ retracker is available as a dedicated retracker for coastal zone, inland water and sea-ice/ice-sheet. A new retracker (SAMOSA++) has been recently developed and will be made available in the future. The scope is to maximize the exploitation of CryoSat-2 and Sentinel-3 data over all surfaces providing user with specific processing options not available in the default processing chains.Recent improvements include: 1) A Join & Share Forum to allow users to post questions and report issues (https://wiki.services.eoportal.org/tiki-custom_home.php); 2) A data repository to better support the growing Altimetry Community avoiding the redundant reprocessing of already processed data (https://wiki.services.eoportal.org/tiki-index.php?page=SARvatore+Data+Repository&highlight=repository); 3) A new function in the GUI allowing users to compute the geodetic distance between selected points on the map; 4) A new function in the GUI to filter the products search to a specific RON (Relative Orbit Number) and to a specific pass direction (Ascending or Descending). Furthermore, users will find in the folder SUM_RESDIR of the output data package a short summary report with information on the products that have not been processed and instructions on how to eventually try to re-process the missing data.To respond to the request of hydrologists, and simulate data that a river gauge would provide, SARvatore will soon include a post-processing service to convert water level estimates in L2 data to virtual station water level values, which are typically required by hydrologists. Validation of SARvatore data over river targets will be presented to demonstrate the potential of both the SAMOSA+/++ retrackers and the innovative processing configurations not available in the default CryoSat-2 and Sentinel-3 processing chains.
- Published
- 2020
- Full Text
- View/download PDF
40. Monitoring of river discharge through the combination of multiple satellite data: RIDESAT project
- Author
-
Angelica Tarpanelli, Jérôme Benveniste, Rossella Belloni, Karina Nielsen, Stefania Camici, Paolo Filippucci, Luca Brocca, Marco Restano, and Tommaso Moramarco
- Subjects
Hydrology ,Discharge ,Satellite data ,Environmental science - Abstract
RIDESAT - RIver flow monitoring and Discharge Estimation by integrating multiple SATellite data, is an ESA-funded Permanent Open Call project aimed to develop a new methodology for estimating river discharge through the combination of radar altimeter, optical and thermal satellite sensors. The combination of multi-sensor measurements can provide significant advantages over single sensors contributing to improve the quality of the final products also in terms of spatial and temporal coverage.The methodology developed in the project includes two phases. First, the single-instrument products (altimeter, optical and thermal sensors) are independently processed to generate a dataset of proxies of hydraulic variables strongly linked with river discharge (e.g. water level, flow velocity, width). Successively, these proxies are implemented as integrated techniques for the final estimation of the river discharge.To test the ability of the approach to retrieve river discharge at global scale, 20 pilot sites are selected all over the world, based on the availability of in-situ measurements and the climatic characteristics of the basins. The availability of large datasets of in situ measurements is used for: 1) the validation of single-instrument products and the river discharge product; 2) the evaluation of the uncertainty attributed to the combination process; 3) the evaluation of the limitation of the procedure.
- Published
- 2020
- Full Text
- View/download PDF
41. Using the Baltic Sea to advance algorithms to extract altimetry-derived sea-level data from complex coastal areas, featuring seasonal sea-ice
- Author
-
Marcello Passaro, Felix L. Müller, Adili Abulaitijiang, Ole B. Andersen, Denise Dettmering, Jacob L. Høyer, Milla Johansson, Julius Oelsmann, Laura Rautiainen, Ida M. Ringgaard, Eero Rinne, Jani Särkkä, Rory Scarrott, Christian Schwatke, Florian Seitz, Kristine Skovgaard Madsen, Laura Tuomi, Americo Ambrozio, Marco Restano, and Jérôme Benveniste
- Abstract
The use of satellite altimetry at high latitudes and coastal regions is currently limited by the presence of seasonal sea ice coverage, and the proximity to the coast. The semi-enclosed Baltic Sea features seasonal coverage of sea-ice in the northern and coastal regions, and complex jagged coastlines with a huge number of small islands. However, as a semi-enclosed sea with a considerable extent, the Baltic Sea features a much-reduced tidal signal, both open- and coastal- waters, and an extensive multi-national network of tide-gauges. These factors maximise opportunities to drive improvements in sea-level estimations for coastal, and seasonal-ice regions.The ESA Baltic SEAL project, launched in April 2019, aims to exploit these opportunities. It is generating and validating a suite of enhanced multi-mission sea level products. Processing is developed specifically for coastal regions, with the objective of achieving a consistent description of the sea-level variability in terms of long-term trends, seasonal variations and a mean sea-surface. These will advance knowledge on adapting processing algorithms, to account for seasonal ice, and complex coastlines. Best practice approaches will be available to update current state-of-the-art datasets.In order to fulfill these goals, a novel altimeter re-tracking strategy has been developed. This enables the homogeneous determination of sea-surface heights for open-ocean, coastal and sea-ice conditions (ALES+). An unsupervised classification algorithm based on artificial intelligence routines has been developed and tailored to ingest data from all current and past satellite altimetry missions. This identifies radar echoes, reflected by narrow cracks within the sea-ice domain. Finally, the improved altimetry observations are gridded onto a triangulated surface mesh, featuring a spatial resolution greater than 1/4 degree. This is more suitable for utility for coastal areas, and use by coastal stakeholders.In addition to utilizing a wide range of altimetry data (Delay-Doppler and Pulse-Limited systems), the Baltic SEAL initiative harnesses the Baltic Seas unique characteristics to test novel geophysical corrections (e.g. wet troposphere correction), use the latest generation of regional altimetry datasets, and evaluate the benefits of the newest satellite altimetry missions. This presentation outlines the methodology and results achieved to date. These include estimations of a new regional mean sea surface, and insights into the trends of the sea level along the altimetry tracks with the longest records. The transfer of advances to other regions and sea-level initiatives are also highlighted.
- Published
- 2020
- Full Text
- View/download PDF
42. Estimating biomass using SAR Altimetry data onboard the Copernicus Sentinel-3 Mission: the ALBIOM project
- Author
-
Jennifer Reynolds, Maria Paola Clarizia, Marco Restano, Davide Comite, Cristina Vittucci, Alireza Taravat, Leila Guerriero, Jérôme Benveniste, Nazzareno Pierdicca, and Giuseppina De Felice-Proia
- Subjects
Biomass ,Environmental science ,Altimeter ,Copernicus ,Remote sensing - Abstract
The ALtimetry for BIOMass project (ALBIOM) is ESA-funded Permanent Open Call Project that proposes to derive forest biomass using Copernicus Sentinel-3 (S3) SAR altimeter data. The project targets the need to improve our current global observations of biomass as an Essential Climate Variable (ECV) and crucial for bioenergy, risk mitigation activities, and sustainable management of forests. The overall goal is to estimate biomass with sufficient accuracy to be able to increase the existing satellite data for biomass retrieval and to improve the global mapping and monitoring of this fundamental variable.The project originates from evidence that radar altimetry backscatter over land responds to a variety of land parameters, including vegetation-related parameters, at the different bands used by past and existing altimeters.To achieve the scientific objectives, the project is structured into six conceptual tasks. After a review of the literature and of the existing user needs, a sensitivity analysis is performed to understand the relationship between SAR altimetry backscatter data and land parameters themselves. This is followed by the development of a Sentinel-3 SAR altimeter backscatter simulator over vegetated areas, and then by the development of a biomass inversion algorithm, testing different retrieval methodologies, both theoretical and empirical. A validation task for both the model and the algorithm is carried out over specific test sites of boreal and tropical forests, to finally generate a prototype of biomass product to be reviewed by potential users.The sensitivity analysis allows to understand how the S3 Level 1 backscatter power waveforms change with respect to varying biomass, but also how they are affected by other land parameters such as soil moisture, land cover, topography and roughness. This analysis is carried out considering both the single-looked and the multi-looked waveforms, and considering primarily the high-resolution SAR mode, but also the Pseudo Low Resolution Mode (PLRM). The outcome of the sensitivity analysis provides indication of what waveforms, acquisition mode, observables derived from the waveforms and characteristics of the waveforms themselves respond more strongly to biomass variations, and on the degree of influence of the other auxiliary parameters, informing on the best strategies and approaches to adopt for the development of the retrieval algorithm.Subsequent to the sensitivity analysis, the S3 altimetry backscatter simulator is developed over vegetated areas, reproducing both the coherent scattering component, which represents the echo from the ground, and incoherent scattering component arising from the forest layers between the ground and the top of canopy. The approach followed is similar to that of the SAVERS simulator, developed for GNSS-Reflectometry, with the signal backscatter attenuation introduced by branches, leaves and trunks modelled through the discrete approach of the Tor Vergata Scattering Model.Results from the sensitivity analysis and the initial stages of the simulation development will be presented and discussed at the conference, together with the foreseen approaches for the development of the biomass retrieval algorithm.
- Published
- 2020
- Full Text
- View/download PDF
43. The BRAT and GUT Couple: Broadview Radar Altimetry and GOCE User Toolboxes
- Author
-
Américo Ambrózio, Jérôme Benveniste, and Marco Restano
- Subjects
Radar altimetry ,Geology ,Remote sensing - Abstract
The scope of this work is to showcase the BRAT (Broadview Radar Altimetry Toolbox) and GUT (GOCE User Toolbox) toolboxes.The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from all previous and current altimetry missions, including Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases on Geodesy & Geophysics, Oceanography, Coastal Zone, Atmosphere, Wind & Waves, Hydrology, Land, Ice and Climate, which can also be consulted in http://www.altimetry.info/radar-altimetry-tutorial/.BRAT's last version (4.2.1) was released in June 2018. Based on the community feedback, the front-end has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images.The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions.In the current version (3.2), GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's Variance/Covariance Matrix (VCM) tool, which enables non-experts to compute and study, with relative ease, the formal errors of quantities – such as geoid height, gravity anomaly/disturbance, radial gravity gradient, vertical deflections – that may be derived from the GOCE gravity models.On our continuous endeavour to provide better and more useful tools, we intend to integrate BRAT into SNAP (Sentinel Application Platform). This will allow our users to easily explore the synergies between both toolboxes. During 2020 we will start going from separate toolboxes to a single one.BRAT and GUT toolboxes can be freely downloaded, along with ancillary material, at https://earth.esa.int/brat and https://earth.esa.int/gut.
- Published
- 2020
- Full Text
- View/download PDF
44. Improved Retrieval Methods for Sentinel-3 SAR Altimetry over Coastal and Open Ocean and recommendations for implementation: ESA SCOOP Project Results
- Author
-
David Cotton, Thomas Moreau, Mònica Roca, Christine Gommenginger, Mathilde Cancet, Luciana Fenoglio-Marc, Marc Naeije, M Joana Fernandes, Andrew Shaw, Marco Restano, Americo Ambrosio, and Jérôme Benveniste
- Abstract
SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. Another objective is to develop and evaluate an improved Wet Troposphere correction for Sentinel-3.The SCOOP studies are based on two 2-year test data sets derived from CryoSat-2 FBR data, produced for 10 regions. The first Test Data Set was processed with algorithms equivalent to the Sentinel-3 baseline, and the second with algorithms expected to provide an improved performance.We present results from the SCOOP project that demonstrate the excellent performance of SRAL at the coast in terms of measurement precision, with noise in Sea Surface Height 20Hz measurements of less than 5cm to within 5km of the coast.We then report the development and testing of new processing approaches designed to improve performance, including, for L1B to L2:Application of zero-padding Application of intra-burst Hamming windowing Exact beam forming in the azimuthal direction Restriction of stack processing to within a specified range of look angles. Along-track antenna compensation And for L1B to L2Application of alternative re-trackers for SAR and RDSAR. Based on the results of this assessment, a second test data set was generated and we present an assessment of the performance of this second Test Data Set generated, and compare it to that of the original Test Data Set.Regarding the WTC for Sentinel-3A, the correction from the on-board MWR has been assessed by means of comparison with independent data sets such as the GPM Microwave Imager (GMI), Jason-2, Jason-3 and Global Navigation Satellite Systems (GNSS) derived WTC at coastal stations. GNSS-derived path Delay Plus (GPD+) corrections have been derived for S3A. Results indicate good overall performance of S3A MWR and GPD+ WTC improvements over MWR-derived WTC, particularly in coastal and polar regions. Based on the outcomes of this study we provide recommendations for improving SAR mode altimeter processing and priorities for future research.
- Published
- 2020
- Full Text
- View/download PDF
45. River levels from multi mission altimetry, a statistical approach
- Author
-
Karina Nielsen, Elena Zakharova, Angelica Tarpanelli, Ole B. Andersen, and Jérôme Benveniste
- Subjects
Multi-mission ,Radar altimetry ,River water levels ,State-space model ,Soil Science ,Geology ,Computers in Earth Sciences - Abstract
Satellite altimetry is a key technique to measure water level change in continental water bodies. Altimetry-based water level time series of rivers are typically constructed at locations where the satellite ground tracks intersect the rivers, the so-called virtual stations. The relatively low sampling frequency (10–27 days) of the repeat missions may result in an under-sampling of the hydrological regime in rivers with sub-monthly to weekly events. We are currently in a unique position with more than a handful satellite altimetry missions simultaneously mapping the surface elevation of the Earth. In combination, these missions contain an unexploited potential to obtain a more detailed picture of the hydrological regime of many of the Earth's rivers. The task of combining water levels measured at different locations and/or by satellites with different orbits is however, challenging due to e.g. topography, intermission biases, variation in river morphology, and other unidentified causes.In this work, we present a new method to combine multi-mission altimetry-based water levels from a river reach. This will also enable the use of geodetic missions like CryoSat-2 and SARAL/AltiKa (after June 2016) in water level time series. To combine the data we set up a state-space model where the process part is a first-order autoregressive process. The observations as a function of time and distance along the reach are described as a sum of the water level at a given time scaled by a distance-dependent factor, the mean water level at the given distance, and an error term. The scale factor and the mean water level are modeled with spline functions. We employ the model for the six rivers Lena, Solimões, Mississippi, Danube, Po, and Red, which range in width from 3 km to a few hundred meters. For each river, we consider a reach of 200–300 km and apply water levels from the satellite altimetry missions CryoSat-2, Sentinel-3A/3B, and SARAL/AltiKa. The selected reach must have a continuous elevation profile and preferable no major tributaries, which might alter the hydrological regime considerably. The length of the reach is a compromise of ensuring enough data but not violating the aforementioned criteria.When validated against in situ data we find a root mean square error ranging from 0.34 m (Solimões River) to 2.53 m (Lena River) and a correlation ranging from 0.83 (Danube River) to 0.99 (Solimões River). These summary statistics are based on approximately 2000–3000 pairs of in situ and modeled water levels. We find the largest increase in detail for the reconstructed water levels for the Danube, Po, and Red Rivers, where the water level variations are under-sampled at the virtual stations. For the Po River, we can detect sub-weekly events with the model and for the Lena River, the spring flood related to ice and snowmelt is better captured when combining the data. An additional advantage of the approach is that the water level time series can be reconstructed at all locations along the considered reach.
- Published
- 2022
- Full Text
- View/download PDF
46. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean
- Author
-
D. Cotton, Jérôme Benveniste, Ole Baltazar Andersen, Mathilde Cancet, and Florent Lyard
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Tide modelling ,Aerospace Engineering ,010502 geochemistry & geophysics ,01 natural sciences ,Tidal atlas ,Physics::Geophysics ,Satellite altimeter ,Data assimilation ,Tidal Model ,Arctic Ocean ,Satellite altimetry ,Physics::Atmospheric and Oceanic Physics ,0105 earth and related environmental sciences ,CryoSat-2 mission ,Astronomy and Astrophysics ,The arctic ,Geophysics ,Space and Planetary Science ,Climatology ,Physics::Space Physics ,General Earth and Planetary Sciences ,Environmental science ,Tide gauge ,Astrophysics::Earth and Planetary Astrophysics - Abstract
The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products. NOVELTIS, DTU Space and LEGOS have developed Arctide2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and CryoSat-2 data between 82°N and 88°N. The combination of these satellite altimetry missions gives the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data were also used for data assimilation and validation. This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global and regional tidal models.
- Published
- 2018
- Full Text
- View/download PDF
47. Assessment of CryoSat-2 SAR mode wind and wave data
- Author
-
Salvatore Dinardo, Jérôme Benveniste, Peter A. E. M. Janssen, and Saleh Abdalla
- Subjects
Synthetic aperture radar ,Atmospheric Science ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,Aerospace Engineering ,Astronomy and Astrophysics ,02 engineering and technology ,Sea state ,01 natural sciences ,Standard deviation ,Wind speed ,law.invention ,Wave model ,Geophysics ,Space and Planetary Science ,Radar altimeter ,law ,General Earth and Planetary Sciences ,Environmental science ,Altimeter ,Significant wave height ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Significant wave height (SWH) and surface wind speed (WS) products from the CryoSat-2 Delay-Doppler, which is commonly known as Synthetic Aperture Radar (SAR), Mode are validated against operational ECMWF atmospheric and wave model results in addition to available observations from buoys, platforms and Jason-2 altimeter. The CryoSat-2 SAR Mode data are processed from Level 1A (also known as Full Bit Rate, FBR, in the CryoSat-2 terminology) up to L1B in accordance to the Delay-Doppler algorithm, and then retracked using SAMOSA (SAR Altimetry MOde Studies and Applications) SAR return waveform model, as implemented in the Grid Processing on Demand (G-POD) service called SAR Versatile Altimetric Toolkit for Ocean Research and Exploitation (SARvatore). The data cover two geographic boxes: one in the northeast Atlantic Ocean (NE Atlantic Box) for the period from 6 September 2010 to 30 June 2014 and the other is in the eastern Pacific (Pacific Box) for the period from 7 May 2012 to 30 June 2014. The amount of data is limited by the CryoSat-2 SAR Mode acquisition mask over ocean but is large enough to ensure robustness and significance of the results. The results show that the quality of both CryoSat-2 SAR SWH and WS products is very high when compared to typical altimetry mission requirements. When compared against model and in-situ data, the correlation coefficients are as high as 0.98 for SWH and 0.95 for WS while the bias and standard deviation of the difference is less than 5% and 0.3 m, respectively, for SWH and less than 0.3 m/s and 1.3 m/s, respectively for WS. The results show that the quality of both CryoSat-2 SAR SWH and WS products is in line with Jason-2 performances and satisfies the typical altimetry mission requirements.
- Published
- 2018
- Full Text
- View/download PDF
48. CryoSat-2 Full Bit Rate Level 1A processing and validation for inland water applications
- Author
-
Jérôme Benveniste, Stephen Birkinshaw, Marco Restano, A. Ambrózio, and Philip Moore
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,0208 environmental biotechnology ,Elevation ,Aerospace Engineering ,Astronomy and Astrophysics ,02 engineering and technology ,Slant range ,Geodesy ,01 natural sciences ,020801 environmental engineering ,Azimuth ,Geophysics ,Space and Planetary Science ,Range (statistics) ,Nadir ,General Earth and Planetary Sciences ,Waveform ,Satellite ,Ka band ,Geology ,0105 earth and related environmental sciences - Abstract
This study uniquely processes Cryosat-2 Full Bit Rate (FBR) SAR Level 1A data to recover inland water heights. The processing methodology involves an azimuthal Fast Fourier Transform (FFT) for the burst echo data followed by beam formation directed towards equi-angular ground points, stacking, slant range correction, multi-looking and finally retracking. It is seen that speckle in the burst echo data affects the recovered heights with precise heights recovered only through stacking and forming multi-look waveforms. Also investigated is the effect of different numbers of multi-looks in the stack to form the final waveform for retracking. A number of empirical retrackers are utilized over inland waters and compared against the oceanic SAMOSA2 and the OCOG/Threshold retrackers. Use of the SAMOSA2 retracker is shown to be inappropriate for inland waters. The use of 81 multi-looks from the stack centred on the nadir direction is shown to be preferred across Tonle Sap with the RMS of height residuals in the range 4–6 cm. External validation across Tonle Sap using gauge data shows that CryoSat-2 heights (RMS 42.1 cm) are comparable to OSTM (RMS 42.6 cm) despite the CryoSat-2 non-repeating orbit which precludes the use of a mean profile. Validation against gauge data at Kratie on the Mekong gives an RMS of 59.9 cm for Cryosat-2 against an RMS of 35.5 cm and 52.2 cm derived from Envisat. The CryoSat-2 results utilize an approximate correction for river slope as the river crossings span 5 km upstream to 80 km downstream of the gauge while the repeat pass crossings of Envisat are at 7 km and 43 km from the gauge. Validation of Amazon altimetric Surface Water Elevation (SWE) showed RMS agreement of 27.3 cm with Obidos gauge data and 56.3 cm at Manacapuru 650 km upstream of Obidos. Overall validations showed that CryoSat-2 altimetric river heights are more accurate than those from TOPEX/Poseidon, OSTM and Envisat for relatively large water bodies but less accurate than the Ka band SARAL (Satellite with ARgos and ALtiKa).
- Published
- 2018
- Full Text
- View/download PDF
49. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters
- Author
-
Stine Kildegaard Rose, Marcello Passaro, Jérôme Benveniste, Denise Dettmering, Eva Boergens, Francisco M. Calafat, and Ole Baltazar Andersen
- Subjects
Leads ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,Subwaveform retracker ,Soil Science ,02 engineering and technology ,Sea state ,01 natural sciences ,Latitude ,ALES ,Validation ,Arctic Ocean ,Sea ice ,Satellite altimetry ,Altimeter ,Computers in Earth Sciences ,Tide gauge ,Sea level ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,geography ,geography.geographical_feature_category ,Retracking ,Geology ,Pelagic zone ,Water level ,Climatology ,Environmental science - Abstract
Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans, because sea level can only be estimated in the openings in the sea ice (leads and polynyas). Similar signal-related problems affect also measurements in coastal and inland waters. This study presents a fitting (also called retracking) strategy (ALES+) based on a subwaveform retracker that is able to adapt the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean demonstrates that the presented strategy is more precise than the dedicated ocean and sea ice retrackers available in the mission products. It decreases the retracking open ocean noise by over 1 cm with respect to the standard ocean retracker and is more precise by over 1 cm with respect to the standard sea ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also the quality of coastal retrievals increases compared to the standard ocean product in the last 6 km within the coast. ALES+ improves the sea level determination at high latitudes and is adapted to fit reflections from any water surface. If used in the open ocean and in the coastal zone, it improves the current official products based on ocean retrackers. First results in the inland waters show that the correlation between water heights from ALES+ and from in-situ measurement is always over 0.95.
- Published
- 2018
- Full Text
- View/download PDF
50. Requirements for a coastal hazards observing system
- Author
-
Jérôme Benveniste, Anny Cazenave, Stefano Vignudelli, Luciana Fenoglio-Marc, Rashmi Shah, Rafael Almar, Ole Andersen, Florence Birol, Pascal Bonnefond, Jérôme Bouffard, Francisco Calafat, Estel Cardellach, Paolo Cipollini, Gonéri Le Cozannet, Claire Dufau, Maria Joana Fernandes, Frédéric Frappart, James Garrison, Christine Gommenginger, Guoqi Han, Jacob L. Høyer, Villy Kourafalou, Eric Leuliette, Zhijin Li, Hubert Loisel, Kristine S. Madsen, Marta Marcos, Angélique Melet, Benoît Meyssignac, Ananda Pascual, Marcello Passaro, Serni Ribó, Remko Scharroo, Y. Tony Song, Sabrina Speich, John Wilkin, Philip Woodworth, Guy Wöppelmann, European Commission, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Agence Spatiale Européenne (ESA), European Space Agency (ESA), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Consiglio Nazionale delle Ricerche [Roma] (CNR), Institute of Geodesy and Geoinformation [Bonn] (IGG), Rheinische Friedrich-Wilhelms-Universität Bonn, Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Department of Science, Echanges Côte-Large (ECOLA), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Systèmes de Référence Temps Espace (SYRTE), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Department of Earth System Science [Irvine] (ESS), University of California [Irvine] (UCI), University of California-University of California, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Mediterrani d'Estudis Avancats (IMEDEA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de las Islas Baleares (UIB), Mercator Océan, Société Civile CNRS Ifremer IRD Météo-France SHOM, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers), Natural Environment Research Council (NERC), LIttoral ENvironnement et Sociétés - UMRi 7266 (LIENSs), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Agence Spatiale Européenne = European Space Agency (ESA), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord]), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), LIttoral ENvironnement et Sociétés (LIENSs), and La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,lcsh:QH1-199.5 ,010504 meteorology & atmospheric sciences ,Coastal zone ,Oceanography ,01 natural sciences ,SDG 13 - Climate Action ,Coastal modeling ,Bathymetry ,retracking ,lcsh:Science ,SDG 15 - Life on Land ,Water Science and Technology ,Global and Planetary Change ,geography.geographical_feature_category ,ddc ,SARDelay-Doppler Radar Altimetry ,Storm surge ,Ocean Engineering ,Sea state ,lcsh:General. Including nature conservation, geographical distribution ,Aquatic Science ,sea level ,Reflectometry Wideband Signals of Opportunity (GNSS-RW-SoOp) ,storm surge ,Sea level ,14. Life underwater ,Altimeter ,[SDU.STU.AG]Sciences of the Universe [physics]/Earth Sciences/Applied geology ,stormsurge ,0105 earth and related environmental sciences ,Shore ,geography ,Coastal hazards ,Land use ,Hazards ,010604 marine biology & hydrobiology ,Retracking ,15. Life on land ,Coastal zones ,13. Climate action ,Reflectometry Wideband Signals of Opportunity (GNSS-R/W-SoOp) ,SAR/Delay-Doppler Radar Altimetry ,Environmental science ,coastal zone ,lcsh:Q ,hazards - Abstract
Coastal zones are highly dynamical systems affected by a variety of natural and anthropogenic forcing factors that include sea level rise, extreme events, local oceanic and atmospheric processes, ground subsidence, etc. However, so far, they remain poorly monitored on a global scale. To better understand changes affecting world coastal zones and to provide crucial information to decision-makers involved in adaptation to and mitigation of environmental risks, coastal observations of various types need to be collected and analyzed. In this white paper, we first discuss the main forcing agents acting on coastal regions (e.g., sea level, winds, waves and currents, river runoff, sediment supply and transport, vertical land motions, land use) and the induced coastal response (e.g., shoreline position, estuaries morphology, land topography at the land-sea interface and coastal bathymetry). We identify a number of space-based observational needs that have to be addressed in the near future to understand coastal zone evolution. Among these, improved monitoring of coastal sea level by satellite altimetry techniques is recognized as high priority. Classical altimeter data in the coastal zone are adversely affected by land contamination with degraded range and geophysical corrections. However, recent progress in coastal altimetry data processing and multi-sensor data synergy, offers new perspective to measure sea level change very close to the coast. This issue is discussed in much detail in this paper, including the development of a global coastal sea-level and sea state climate record with mission consistent coastal processing and products dedicated to coastal regimes. Finally, we present a new promising technology based on the use of Signals of Opportunity (SoOp), i.e., communication satellite transmissions that are reutilized as illumination sources in a bistatic radar configuration, for measuring coastal sea level. Since SoOp technology requires only receiver technology to be placed in orbit, small satellite platforms could be used, enabling a constellation to achieve high spatio-temporal resolutions of sea level in coastal zones., Part of this work has been carried out with the financial support of the following research projects: Spanish research grant ESP2015-70014-C2-2-R (MINECO/FEDER) and Spanish Ministry of Science, Innovation and Universities: RTI2018-099008-B-C22, ESA contract Sea_Level_cci (No. 4000126561/19/I-NB).
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.