1. Quasiparticle tunnel electroresistance in superconducting junctions
- Author
-
Alexandre I. Buzdin, Maria Varela, Gyanendra Singh, Jesus Santamaria, R. El Hage, J. Grandal, Juan Trastoy, Xavier Palermo, Anke Sander, K. Seurre, V. Rouco, J. Briatico, Nicolas Bergeal, Karim Bouzehouane, Cheryl Feuillet-Palma, Carlos León, Stéphane Collin, Javier E. Villegas, Jerome Lesueur, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), Departamento de Ingeniería Electrónica and ISOM (ETSI Telecomunicacion), Universidad Politécnica de Madrid (UPM)-Ciudad Universitaria, Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Kansas State University, Institut des Nanosciences de Paris (INSP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et d'Etude des Matériaux (UMR 8213) (LPEM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Instituto Universitario de Investigacion de Nanocienca de Aragon, University of Zaragoza - Universidad de Zaragoza [Zaragoza], Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
Electronic properties and materials ,Materials science ,Science ,Oxide ,General Physics and Astronomy ,02 engineering and technology ,Electron ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Superconducting properties and materials ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,Surfaces, interfaces and thin films ,Condensed Matter::Superconductivity ,0103 physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,Polarization (electrochemistry) ,lcsh:Science ,Quantum tunnelling ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Superconductivity ,Multidisciplinary ,Condensed matter physics ,Física de materiales ,Conductance ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Ferroelectricity ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,chemistry ,Física del estado sólido ,Quasiparticle ,lcsh:Q ,0210 nano-technology - Abstract
The term tunnel electroresistance (TER) denotes a fast, non-volatile, reversible resistance switching triggered by voltage pulses in ferroelectric tunnel junctions. It is explained by subtle mechanisms connected to the voltage-induced reversal of the ferroelectric polarization. Here we demonstrate that effects functionally indistinguishable from the TER can be produced in a simpler junction scheme—a direct contact between a metal and an oxide—through a different mechanism: a reversible redox reaction that modifies the oxide’s ground-state. This is shown in junctions based on a cuprate superconductor, whose ground-state is sensitive to the oxygen stoichiometry and can be tracked in operando via changes in the conductance spectra. Furthermore, we find that electrochemistry is the governing mechanism even if a ferroelectric is placed between the metal and the oxide. Finally, we extend the concept of electroresistance to the tunnelling of superconducting quasiparticles, for which the switching effects are much stronger than for normal electrons. Besides providing crucial understanding, our results provide a basis for non-volatile Josephson memory devices., The non-volatile switching of tunnel electroresistance in ferroelectric junctions provides the basis for memory and neuromorphic computing devices. Rouco et al. show tunnel electroresistance in superconductor-based junctions that arises from a redox rather than ferroelectric mechanism and is enhanced by superconductivity.
- Published
- 2020
- Full Text
- View/download PDF