1. Efficient and accurate calculation of band gaps of halide perovskites with the Tran-Blaha modified Becke-Johnson potential
- Author
-
Mikael Kepenekian, Xavier Rocquefelte, Fabien Tran, Gaëlle Bouder, Boubacar Traore, Claudine Katan, William Lafargue-Dit-Hauret, Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Institute of Materials Chemistry, Vienna University of Technology (TU Wien), 2017-A0010907682, Grand Équipement National De Calcul Intensif, 687008, Horizon 2020, F41, Austrian Science Fund, ANR-15-CE05-0018,TRANSHYPERO,Vers une compréhension des propriétés de transport électronique des cellules solaires basées sur les pérovskites hybrides(2015), European Project: 687008,H2020,H2020-FETOPEN-2014-2015-RIA,GOTSolar(2016), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
Materials science ,hybrid organic-inorganic ,Band gap ,band structure ,perovskites ,Halide ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Electronic structure ,Large range ,electronic structure ,021001 nanoscience & nanotechnology ,DFT ,01 natural sciences ,7. Clean energy ,Computational physics ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Pseudopotential ,0103 physical sciences ,Density functional theory ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Hop (telecommunications) ,010306 general physics ,0210 nano-technology ,Electronic band structure - Abstract
This work was granted access to the HPC resources of [TGCC/CINES/IDRIS] under allocation 2017-A0010907682 made by GENCI.; International audience; We report on a reoptimization of the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential dedicated to the prediction of the band gaps of 3-dimensional (3D) and layered hybrid organic-inorganic perovskites (HOP) within pseudopotential-based density functional theory methods. These materials hold promise for future photovoltaic and optoelectronic applications. We begin by determining a set of parameters for 3D HOP optimized over a large range of materials. Then we consider the case of layered HOP. We design an empirical relationship that facilitates the prediction of band gaps of layered HOP with arbitrary interlayer molecular spacers with a computational cost considerably lower than more advanced methods like hybrid or GW. Our study also shows that substituting interlayer molecular chains of layered HOP with Cs atoms is an appealing and cost-effective route to band gap calculations. Finally, we discuss on the pitfalls and limitations of TB-mBJ for HOP, notably its tendency to overestimate the effective masses due to the narrowing of the band dispersions. We expect our results to extend the use of TB-mBJ for other low-dimensional materials.
- Published
- 2019