346 results on '"Hussain S."'
Search Results
2. Sustainable entrepreneurship development in Oman: a multi-stakeholder qualitative study
- Author
-
Arslan, A. (Ahmad), Al Kharusi, S. (Sami), Hussain, S. M. (Syed Mujahid), and Alo, O. (Obinna)
- Subjects
FinTech ,Organizational Behavior and Human Resource Management ,Oman ,Strategy and Management ,Skills Development ,Entrepreneurship ,Sustainable - Abstract
Purpose Even though sustainable entrepreneurship has increasingly received researchers’ attention in recent years, the topic remains rather under-researched in natural resources’ rich Gulf countries such as Oman. Hence, this paper aims to fill this gap in the literature and, to the best of the authors’ knowledge, is one of the first attempts to assess the state of sustainable entrepreneurship development in Oman from a multi-stakeholder perspective. Design/methodology/approach This paper uses a qualitative research approach where in-depth semi-structured interviews were undertaken with 12 respondents representing relevant stakeholders of sustainable entrepreneurship development in Oman. The interviewees included four sustainable entrepreneurs, four policymakers and four educationists representing entrepreneurial skills development institutes in Oman. Findings This papers’ findings highlight that despite some positive improvements, several critical challenges remain, which hinder sustainable entrepreneurship development. The authors further found the role of FinTech to be critical in this concern by all stakeholders, though its usage and acceptance remain low. Also, the costs associated with the post-carbon (sustainable) economy and different profitability evolution have resulted in a slow change in the policy development in this concern. From an educational (skills development) perspective, a lack of context-specific training programmes and culture-based hesitations appeared to be hindering achieving sustainable entrepreneurship possibilities in Oman. The nascent entrepreneurial ecosystem, bureaucracy and lack of human capital (attraction as well as retention) appeared to be significant challenges for entrepreneurs. Finally, the findings highlighted the need for cross-sector collaboration with clear benchmarks for effective policy development concerning sustainable entrepreneurship in Oman. Originality/value To the best of the authors’ knowledge, this paper is the first academic study explicitly highlighting the state of sustainable entrepreneurship in Oman by incorporating the development initiatives as well as the major challenges in the analysis. Secondly, this study is also a pioneering work specifying the interlinkage between financing (FinTech), policy initiatives and skills development and the development of a sustainable entrepreneurship ecosystem in an under-researched context of Oman. Finally, the transition to a sustainable economy is challenging in natural resources’ dependent economies like Oman, as it needs to be supported by the mindset change in the larger society (legitimacy). In this concern, this paper, to the best of the authors’ knowledge, is one of the first academic endeavours to also specify the role of legitimacy from the perspective of different stakeholders (and larger society) for sustainable entrepreneurship development in such contexts.
- Published
- 2023
- Full Text
- View/download PDF
3. Clinicopathological assessment of chronic hyperplastic candidasis
- Author
-
Hussain S Hussain and Ban F Al-Drobie
- Subjects
General Medicine - Abstract
Background: Chronic hyperplastic candidiasis is the least common type of oral candidiasis. The diagnosis, long-term treatment, and prognosis of this potentially malignant oral condition are still currently unclear. Objective: the aim of this study is to analyze the demographic features and clinical characteristics of oral chronic hyperplastic candidiasis. Materials and Methods: A retrospective analysis was performed on blocks and case sheets of patients who were diagnosed with chronic hyperplastic candidiasis in the archives of Oral and Maxillofacial Pathology at the College of Dentistry/University of Baghdad. Demographic and clinical characteristics were analyzed. Results: twenty-one cases with chronic hyperplastic candidiasis were collected and reviewed. Buccal mucosa was the most affected sites. Regarding the clinical features, lesions color frequently presented as white plaque. Regarding clinical diagnosis, leukoplakia was noted the highest one among other previous diagnosis. Conclusions: Older adults are the mostly affected age group by chronic hyperplastic candidiasis with slight male predilection. White plaque is the most presented clinical feature with buccal mucosa being the most affected oral site.
- Published
- 2022
- Full Text
- View/download PDF
4. Preparation and Characterization of Superparamagnetic Iron Oxide Nanoparticles (Fe3O4) for Biological Applications
- Author
-
null Ahmed Hisham Fathallah, null Hussain S. Akbar, and null Fatin M. Nawwab Al-Deen
- Subjects
General Medicine - Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are developed considering the importance of this class of in different fields of biochemical and biomedical applications owing to their distinctive chemical and physical properties. In this work, the preparation of iron oxide nanoparticles (SPIONs (using Co-precipitation method has been done as the most commonly used wet chemical method of magnetic nanoparticles preparation for biological applications. The SPIONs synthesis was based on sodium hydroxide (NaOH) mediated precipitation of Fe3+ and Fe2+ salts in an aqueous solution using trisodium citrate as surfactant within a closed system. The size and stability of the magnetite nanoparticles were carefully controlled using different chemical and physical parameters in order to obtain the SPIONs with small particle size and distribution that is needed for biomedical applications. The synthesized Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), and Zeta potential analysis (Zp). XRD pattern showed the presence of peaks corresponding to the phase of magnetite Fe3O4. Moreover, SEM and TEM results revealed spherical particles with a mean diameter of ≥ 5 nm. The monodispersed SPIONs were successfully prepared with a mean hydrodynamic size of 209.32 nm at a stirring speed of 900 rpm and NaOH concentration of 1.2 gm. The results showed that the particle size is considerably dependent on the stirring rate and NaOH concentration. Fe3O4 nanoparticles exhibited superparamagnetic behavior and the saturation magnetization was around 50 emu/g.
- Published
- 2022
- Full Text
- View/download PDF
5. Prevalent practice and attitude toward Wet Cupping Therapy
- Author
-
Ali A Bu-Khamseen, Alya A Bu-Khamsin, Abdullah A Alnaim, Zahra E Alabbad, Hussain A Alturaifi, Fatimah A Alkhawajah, Wedad M Alabbad, Fatimah M Alhashem Alsayed, Mohammed A Alnajjad, Haidar Alabdrabulridha, Hassan K AlBohassan, Sadiq Bassam Busaleh, Mohammed Ali Alsalman, Ryhana Mohammed Aljumaiah, and Hussain S Alsultan
- Published
- 2022
- Full Text
- View/download PDF
6. The effectiveness of injury prevention programs that include core stability exercises in reducing the incidence of knee injury among soccer players: A systematic review and meta-analysis
- Author
-
Wesam Saleh A. Al Attar, Hussain S. Ghulam, Saud Al Arifi, Amirah M. Akkam, Ahmed I. Alomar, and Ross H. Sanders
- Subjects
Biophysics ,Physical Therapy, Sports Therapy and Rehabilitation ,Orthopedics and Sports Medicine - Abstract
BACKGROUND: The knee is one of the most common sites of injuries among soccer players. The incidence of knee injuries can be reduced by improving the neuromuscular control and core stability. OBJECTIVE: This study aimed to evaluate the effectiveness of injury prevention programs that include core stability exercises in reducing the incidence of knee injuries among soccer players. METHODS: Data were obtained from different databases (1985–2021). Only randomized controlled trials that used injury prevention programs that include core stability exercise to prevent knee injuries were included. The keywords used during the search were ‘knee injuries’, ‘core stability exercises’, ‘FIFA 11+’, ‘prevention of knee injuries’, ‘anterior cruciate ligament injury’ and variations of these search terms. RESULTS: The pooled results of 7828 soccer players and 863700 exposure h showed an overall injury reduction of 56% per 1000 h of exposure in the intervention group compared to the control group with an injury risk ratio of 0.44 (95% CI 0.321–0.619; P= 0.001). CONCLUSIONS: Injury prevention programs that include core stability exercises reduce knee injury rates among soccer players by 56% (46% in male and 65% in female soccer players).
- Published
- 2022
- Full Text
- View/download PDF
7. Patient knowledge and adherence to anti-hypertensive medications in Saudi Arabia
- Author
-
Ahmed M Aljameeli, Malak Nawaf Shayim Alanazi, Samia Suliman S Alanazi, Marwan Mohammed I Alsaab, Mona Hussain S Alanazi, Sarah Mohammed H Alanazi, Tahani Aqeel Alshammari, Tamam Mohammed Hassan Al Ruwaili, Sitah Mohayaa Jawan Alharbi, and Abdalla Mohamed Bakr Ali
- Published
- 2022
- Full Text
- View/download PDF
8. Covid-19 Vaccinations and Menstrual Cycle Alteration
- Author
-
Hussain S
- Subjects
General Engineering - Abstract
The rapid development of safe and effective vaccines against Coronavirus Disease 2019 (COVID-19) has been a triumph of medical sciences, but vaccines only work if people take them. COVID-19 vaccination may be associated with change in menstrual cycle length following vaccination. Although there is extensive evidence that COVID-19 vaccination does not affect fertility, misinformation that it could has been a major source of vaccine hesitancy among young women. As the vaccination program was rolled out to younger age groups, some people noticed menstrual changes after COVID-19 vaccination, and many members of the public found these reports concerning. Research was needed to generate robust data to inform healthcare professionals and the public about these potential side effects. Menstrual changes have been reported in association with a variety of vaccines, including those against pathogens other than severe acute respiratory syndrome coronavirus 2 (SARSCoV-2), so the aim of this work is to describe SARS-CoV-2 infection and the menstrual cycle changes because of it.
- Published
- 2023
- Full Text
- View/download PDF
9. Innovative Waste Management Solutions For Smart Cities Using IoT & NodeMCU
- Author
-
Suresh V Kumar, Sree Rethanya K, Shameer Hussain S, Siva Sankar S, and Sriram E
- Published
- 2023
- Full Text
- View/download PDF
10. Production of Titanium Dioxide Nanoparticles via Laser Ablation Technique and Study of its Characteristics
- Author
-
Russul Najem Abood, Hasan, Hussain S., and Hussein, Basima M. A.
- Abstract
The titanium dioxide (TiO2) nanoparticles were created using the pulsed laser ablation technique using titanium dioxide powder as a pellet in deionized water and ablated with Nd: YAG laser operating at a laser energy range of 800 mJ with 1 Hz. Transmission electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, and zeta potential microscopy were used to analyze the produced materials. According to X-ray diffraction measurements, the polycrystalline structure of the TiO2 nanoparticle film has a preference for orientation in the (100) direction. The large spherical form of the TiO2 nanoparticles was seen in the FESEM pictures. TEM image showed that the average size of TiO2 np is 25 nm., Keywords: Titanium Dioxide Nanoparticles, Laser Ablation Technique, Zeta Potential Microscopy
- Published
- 2023
- Full Text
- View/download PDF
11. DEVELOPMENT OF A GOOGLE EARTH ENGINE BASED APPLICATION TO MONITOR THE SEASONAL WATER SPREAD AREA OF RIVER GANGA
- Author
-
Tripathi, R. N., Ramachandran, A., Hussain, S. A., Tripathi, V., and Badola, R.
- Abstract
The National River Ganga, home to the National aquatic animal, Gangetic dolphin along with species of critically endangered otters, gharial crocodile, turtles, waterbirds and numerous aquatic and semi aquatic life forms is of conservation importance to safeguard the biodiversity it harbors. Meanwhile, River Ganga is also the source of highly productive agricultural yield that satiates the nation’s food demands. The last few years have echoed demands for ‘e-flow’ regulations to be formalized and regularized to maintain healthy river conditions with adequate amount of water retained in the rivers while meeting the populations demand for water supply. Though e flow estimations are a complex science in itself, the simplest way is visualization. In this context, there needs to be a transparent mechanism to picturise and depict the ground conditions of the river stretches. Remote sensing provides ‘eyes in the sky’. The river receives water in the form of precipitation, snow melt and ground water recharge and the hydrological flux is evident in the surface water. Thus delineating the water spread area can provide a crude estimate of the water in the river. The Google Earth Engine platform provides a collection of satellite imageries, server side data processing and algorithms. The Landsat and Sentinel data catalogue offers good coverage of the river and its basin. Though sentinel data provides high ground resolution of 10m, Landsat provides multi temporal historic coverage at a good 30 m resolution, that works well for the main stem river. From the various available data processing methods, spectral decomposition technique of Modified Normalised Differential Water Index MNDWI was found to be most effective in delineating surface water. Data was filtered for the three major seasons of Pre monsoon, Monsoon and Post monsoon periods and MNDWI for the same was visualized. While Middle Ganga region through Uttar Pradesh shows seasonal flooding during the monsoon period, the Lower Ganga after the confluence of major tributaries of Son, Ghaghra, Gandak and Kosi flows in full bank width in the Post monsoon period. During the pre monsoon period many stretches of Ganga particularly the Upper middle stretch showed thin shallow channel and intermittent deep pools disconnected by dry sand beds. These regions result in disruption in the river flow and are priority sites to implement e flow regulations. Another key factor is the regulation of flow in the river from barrages. Sudden release of water can cause flooding resulting in disturbance to the life cycle of species that are tuned to the natural annual hydrological pulse of the river. This is because different aquatic species have different river width and depth requirements. Thus monitoring the seasonal variations in the water spread area helps to note the longitudinal and lateral connectivity of the river which is a prime characteristic for the health of a river. This study intended to create an application that offers to visualize the seasonal water spread in the Ganga river for the past years that can assist decision makers to monitor the river and make informed regulatory measures.
- Published
- 2022
- Full Text
- View/download PDF
12. An Automated System for the Classification of COVID-19, Suspected COVID-19 and Healthy Lung CT Images based on Local Binary Pattern and Deep Learning Features
- Author
-
Luma J. Satoory, Hussain S. Hasan, and Ali M. Hasan
- Subjects
Developmental Neuroscience ,Cognitive Neuroscience ,Atomic and Molecular Physics, and Optics - Abstract
Because of the inadequate capacity and a substantial surge of probable COVID-19 cases, several health systems around worldwide have collapsed. As a result, the requirement for a rapid, effective, and precise way to reduce radiologists' workload in diagnosing suspected instances has arisen. The goal of the present study is to develop a novel system to automatically diagnose and classify lung CT scans into three categories: suspected covid-19, covid-19, and healthy lung scans. Before feature extraction using convolutional neural network (CNN) and Local Binary Pattern (LBP) approaches, the CT scans are first pre-processed through implementing a set of algorithms. Lastly, with the use of the support vector machine (SVM) model, such features are divided into three groups. The maximum accuracy attained in classifying a dataset of 351 CT scans of the lungs was 98.22%. The outcomes of the experiments show that merging the extracted features increases the effectiveness of lung classification CT scans.
- Published
- 2022
- Full Text
- View/download PDF
13. Recent Development-1 of CADTEL Software: The Resolution and Focusing Parameters Affecting at the Properties of Electron Magnetic Lenses
- Author
-
Hussain S. Hasan, Sura Allawi Obaid, and Muhssen Salbookh Erhayief
- Subjects
General Computer Science ,General Chemistry ,General Biochemistry, Genetics and Molecular Biology - Abstract
Computer Aided Designing Tools of Electron Lenses (CADTEL) is a software packages cares about design, compute and plot simultaneously of the objective and projector properties of electron magnetic lenses. The developments in CADTEL software leads to contain a large fields and methods, adding to previous publish in 2013. The current improvement is inserting of some important parameters which are the resolution and focusing parameters. These parameters are angular semi-angle (α), focusing power (β), resolution limit (δ), image rotation (θ), spherical aberration (Cs), defocus (ΔZ), wave aberration (Χwab), depth of field (Dfld), and depth of focus (Dfoc) at certain magnification conditions. Thus, user can easily compute and plot, according to relations and forms, the effect of these parameters at the lens properties of four magnification conditions; zero, infinite and finite (low and high) magnification modes. This work introduces a new development for CADTEL software which is an interactive visual interface in electromagnetic lenses.Whereas, it reflects a substantial reduction of time and resources desired for training new users and researchers in electron optics field. The results and curves representations appear with visual interfaces which are coded in visual basic programing language. In addition, the computations and figures which were plotted appeared that complete identification between these results which are obtained from CADTEL and that from other software’s and direct computations methods.
- Published
- 2022
- Full Text
- View/download PDF
14. Monkeypox Re-Emergence after Covid-19 Crisis
- Author
-
Hussain S
- Subjects
General Engineering - Abstract
Several contagious illness outbreaks have devastated the globe over the past. With the plethora of potential and reappearing infections such as MXP on the upswing, it is past time to draw lessons and insights from previous outbreaks to guide and effectively prepare for potential future outbreaks. Monkeypox (MXP) is a new zoonotic disease that has emerged as the most common orthopoxvirus infection in people since the elimination of smallpox. MXP's clinical manifestations are identical to that of smallpox. The illness is endemic in the Democratic Republic of the Congo (DRC), although other nations in Central Africa (CA) and West Africa (WA) have documented human cases or wildlife transmission. The MXP was also identified for the first time in the United States (US) in 2003. The condition has long been thought to be uncommon and self-limiting, although infrequent cases imply differently. Regrettably, the information gathered is scarce, fragmented, and sometimes inaccurate. Human MXP cases have grown in incidence and regional distribution in past years because there are significant gaps in knowledge of the condition's origin, epidemiology, and biology. The MXP virus is an elevated virus that infects a serious publichealth problem. As a result, there seems to be a necessity to emphasize developing surveillance capabilities that will give vital data for establishing suitable preventative, readiness, and response operations.
- Published
- 2022
- Full Text
- View/download PDF
15. The Recent Application of the OSTRC Boxing Injury Prevention Program among Boxers in the Gulf Cooperation Council Countries
- Author
-
Wesam Saleh A. Al Attar, Walaa Abutaleb, Nada Alhazmi, and Hussain S. Ghulam
- Published
- 2022
- Full Text
- View/download PDF
16. Recent Development-2 of CADTEL Software: The Optimum Conditions of Scherzer Imaging in the Electron Magnetic Lenses
- Author
-
Hussain S. Hasan, Sura Allawi Obaid, and Muhssen Salbookh Erhayief
- Subjects
General Computer Science ,General Chemistry ,General Biochemistry, Genetics and Molecular Biology - Abstract
CADTEL software was developed to provide the simplest and most versatile computing resource that a wide range of skilled researchers and designers can use. In this paper, a development on this program, relying on sixteen mathematical models, produced a new version of CADTEL software package which focuses on the optimum conditions of Scherzer imaging for round electron magnetic lenses.. These models depend on synthesis procedure which is mainly designed to work with the inverse design problem, and represent the axial magnetic flux density of desirable electron magnetic lens which can be proposed or selected , using the four (zero, low, high, infinite) magnification states. The program provides the freedom of selecting multiple models and changing its variables (which appear on the home page), in addition to providing facilities for numerous proposed magnetic lens. The objective properties calculated in the program were used to compute and plot the optimum conditions for Scherzer imaging The CADTEL software was written in Visual Basic – 6, in an easy-to-use mode, even for a beginner computer user. The results of the analysis clearly show that there is an excellent equivalent calculation which could be obtained for the same lens from CADTEL software when evaluated with other counterpart software.
- Published
- 2022
- Full Text
- View/download PDF
17. Metabolic Health Profile of Employees in a Printing Press in Peshawar, Pakistan
- Author
-
Afaq, S, Ali, M, Ahmad, M, Hussain, S, Ali, W, and Munir, I
- Subjects
Health (social science) ,Physiology ,1302 Curriculum and Pedagogy ,Rehabilitation ,1106 Human Movement and Sports Sciences ,Biomedical Engineering ,Physical Therapy, Sports Therapy and Rehabilitation ,Orthopedics and Sports Medicine ,Public Health ,Anatomy ,1117 Public Health and Health Services - Abstract
Background: Printing press workers deal with printing inks that contain potentially hazardous chemicals and solvents. Present study was designed to determine the biochemical health profile of printing press workers. Methods: Cross sectional study was conducted in 50 printing press (male) workers and 20 non-printing press age matched (male) workers, who were not exposed to printing press environment but lived all around the printing press area. Non-fasting blood samples were collected, from both Workers and Non-Workers, for determining full blood counts, lipid profile, Uric acid and Creatinine. Results: Mean levels of cholesterol was 213 mg/dl (SD = ±13.0) vs 146 (SD = ±5.50), P = 0.04], triglycerides were 303 mg/dl (SD = ±16.9) vs 196 mg/dl (SD = ±7.13), P = 0.03 and LDL was 103 mmol/l (±3.32) vs 42.9 mmol/l (±2.57), P = 0.01 which were significantly higher in printing press workers than in Nonworkers. Additionally, mean total leukocyte count and total lymphocytes, were significantly higher 8590 (SD = ±830) vs. 7100 (SD = ±542) per cmm, P = 0.04 and 44.8 (SD = ±2.17) % vs. 33.1 (SD = ±1.85)% respectively, P = 0.02) while mean neutrophil count was significantly lower 46.3% (SD ± 1.97) vs. 59.7 % (SD ± 1.88) respectively, P = 0.03 in printing press workers than in Nonworkers. Conclusion: Exposure to various chemicals in inks may put printing press workers at risk of poor biochemical profile which is an important risk factor for developing non-communicable diseases.
- Published
- 2022
- Full Text
- View/download PDF
18. A Novel Energy Harvesting Logics using MEMS for IoT Assisted Applications
- Author
-
Imran Hussain S, Roselin Sneha P, Nandhini G, and Sathya Roobika S
- Published
- 2023
- Full Text
- View/download PDF
19. TRAUMATIC DENTAL INJURIES, MANAGEMENT AND COMPLICATIONS IN SCHOOL GOING CHILDREN AND ADOLESCENTS. AN UPDATE
- Author
-
Ibrahim Mohammed Albakry, Saad Dhaifallah Alsilah, Zainab Hassan Ali Alfaraj, Ahmed Hadi Al Mashni, Fawaz Mana Al Zulayq, Abdullah Hussain S Al Salem, and Fesal Farag Nouman Alanezi
- Subjects
Dental Trauma Etiology Prevalence PulpNecrosis Resorption Ankylosis - Abstract
Objective.The purpose is to outline the etiology, prevalence and potential consequences of dentaltrauma. Materialandmethods.MicroelectronicexaminationofMedline(PubMed),Cochrane,SSCI(SocialCitation Index), SCI (Science Citation Index) records from 1995 to the present, using the following searchwords:toothinjuries,toothtrauma,traumatizedteeth,dentaltrauma,dento-alveolartrauma,oraltrauma,epidemiology,etiology,prevalence,prevention,pulpnecrosis,inflammatoryresorption,ankyloses,cervicalresorption, was implemented. Results. During the last decade, traumatic dental injuries were recognized as a public dental healthproblem worldwide. Prevalence of traumatic dental injuries varies among countries. In line with theexistingdatatheyaremoreprevalentinpermanentthaninprimarydentition.Alltreatmentprocedures,incaseofdentaltrauma,aredirectedtominimizeundesiredconsequencesdespitethefact,thattreatmentof traumatic dental injuries in the young patient is often complicated and can continue duringthe rest of his/her life. The changing lifestyle and requirements of modern society have lead to anemergence of new patterns of dental trauma. A regular update of knowledge in dental traumatology isrequired. Conclusion-ThemostfrequentTDIincludedlateralluxationinprimaryteethandenamel-dentinefractures inpermanentteeth.Weobserveda delayinpatientsobtainingemergency dentalcare.
- Published
- 2023
- Full Text
- View/download PDF
20. Computational approaches for discovering significant microRNAs, microRNA-mRNA regulatory pathways, and therapeutic protein targets in endometrial cancer
- Author
-
Ghada Ajabnoor, Fai Alsubhi, Thoraia Shinawi, Wisam Habhab, Walaa F. Albaqami, Hussain S. Alqahtani, Hisham Nasief, Nabeel Bondagji, Ramu Elango, Noor Ahmad Shaik, and Babajan Banaganapalli
- Subjects
Genetics ,Molecular Medicine ,Genetics (clinical) - Abstract
Endometrial cancer (EC) is a urogenital cancer affecting millions of post-menopausal women, globally. This study aims to identify key miRNAs, target genes, and drug targets associated with EC metastasis. The global miRNA and mRNA expression datasets of endometrial tissue biopsies (24 tumors +3 healthy tissues for mRNA and 18 tumor +4 healthy tissues for miRNAs), were extensively analyzed by mapping of DEGs, DEMi, biological pathway enrichment, miRNA-mRNA networking, drug target identification, and survival curve output for differentially expressed genes. Our results reveal the dysregulated expression of 26 miRNAs and their 66 target genes involved in focal adhesions, p53 signaling pathway, ECM-receptor interaction, Hedgehog signaling pathway, fat digestion and absorption, glioma as well as retinol metabolism involved in cell growth, migration, and proliferation of endometrial cancer cells. The subsequent miRNA-mRNA network and expression status analysis have narrowed down to 2 hub miRNAs (hsa-mir-200a, hsa-mir-429) and 6 hub genes (PTCH1, FOSB, PDGFRA, CCND2, ABL1, ALDH1A1). Further investigations with different systems biology methods have prioritized ALDH1A1, ABL1 and CCND2 as potential genes involved in endometrial cancer metastasis owing to their high mutation load and expression status. Interestingly, overexpression of PTCH1, ABL1 and FOSB genes are reported to be associated with a low survival rate among cancer patients. The upregulated hsa-mir-200a-b is associated with the decreased expression of the PTCH1, CCND2, PDGFRA, FOSB and ABL1 genes in endometrial cancer tissue while hsa-mir-429 is correlated with the decreased expression of the ALDH1A1 gene, besides some antibodies, PROTACs and inhibitory molecules. In conclusion, this study identified key miRNAs (hsa-mir-200a, hsa-mir-429) and target genes ALDH1A1, ABL1 and CCND2 as potential biomarkers for metastatic endometrial cancers from large-scale gene expression data using systems biology approaches.
- Published
- 2023
- Full Text
- View/download PDF
21. Assessment of the Antibacterial Activity of Silver Nanoparticles Inhibital and Diode Laser against MR Staphylococcus aureus from Clinical Infection
- Author
-
Saja Z. AL-AWADI, Hussain S. HASAN, and Labeeb Ahmed ALZUBAIDI
- Abstract
As a result of S. aureus widespread antibiotic resistance, there was a need to look for alternative ways to treat these bacteria. One of these materials is silver nanoparticles. The goal of this study is to evaluate the inhibitor activity of silver nanoparticles against a variety of antibiotic-resistant S. aureus bacteria, as well as to identify the optimal biological activity concentration and compare it to the efficiency of diode laser irradiation at various exposure times and distances. Silver nanoparticles were produced chemically using silver nitrate, and they were examined using UV-Vis spectroscopy, atomic force microscopy(AFM), scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDX), X-ray diffraction(XRD), and Fourier– Transform Infrared Spectroscopy (FTIR), Diode laser and silver nanoparticles were utilized individually to combat microorganisms that were resistant to antibiotics. Additionally, silver nanoparticles were shared at various distances (2, 4, 6 mm) and time (1, 3, 6, 9 and 12 minutes) with a diode laser (532 nm).The results showed that bacteria with a concentration of (1.5 x 107) cells/ml were most effectively inhibited by silver nanoparticles at a concentration of 307.4 ppm. A synergistic effect of silver nanoparticles was observed at a concentration (307.4 ppm) and a diode laser with an exposure time of 3 minutes and a distance of 2 mm. The diode laser gave the highest inhibitor value at 12 minutes, the bacterial growth was zero, the effectiveness of the diode laser was at a distance of 2 mm, and the bacterial growth reached zero., The findings demonstrated that tiny quantities of silver nanoparticles can affect bacteria, and that diode laser irradiation of bacteria at various durations and distances significantly reduced bacterial growth., Keywords: Silver NPs, S.aureus, Diode Laser, Antibacterial Activity
- Published
- 2023
- Full Text
- View/download PDF
22. Physician Knowledge and Attitudes Toward the Adoption of Peritoneal Dialysis in the Treatment of Patients With End-Stage Kidney Disease
- Author
-
Hussain S Lalani, Anisha Ganguly, Larry S Brown, Jillian Smartt, David H Johnson, Kavita P Bhavan, and Ramesh Saxena
- Subjects
General Engineering - Published
- 2022
- Full Text
- View/download PDF
23. Evaluating the understanding about kidney stones among adults in the United Arab Emirates
- Author
-
Eva A. Tillo, Dana A. Salam, Safa Z. Kadhim, Ahmed H. Alsadi, Nora Marwan Al-Roub, and Hussain S. Aldaher
- Subjects
Medicine (General) ,020205 medical informatics ,Kidney stones ,Population ,حصى الكلى ,02 engineering and technology ,Multiple risk factors ,03 medical and health sciences ,Knowledge score ,R5-920 ,0302 clinical medicine ,Environmental health ,Prevalence ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,030212 general & internal medicine ,Family history ,education ,education.field_of_study ,business.industry ,General Medicine ,عوامل الخطر ,medicine.disease ,Knowledge ,Abu dhabi ,Risk factors ,Student Article ,المعرفة ,Cohort ,علم الأوبئة ,حصوات الكلى ,Renal stones ,business - Abstract
الملخص: أهداف البحث: تزايد انتشار حصى الكلى في جميع أنحاء العالم في العقد الماضي، ويُعتقد أن عوامل الخطر المتعددة تُعزى إلى التغيير في نمط الحياة، والنظام الغذائي، وحتى الاحتباس الحراري. في دولة الإمارات العربية المتحدة، لم يتم عمل الكثير من البحوث لاستكشاف انتشار حصى الكلى والمعرفة عنها. تهدف هذه الدراسة إلى قياس مدى معرفة المجتمع بحصى الكلى بين البالغين في دولة الإمارات العربية المتحدة. طرق البحث: في هذه الدراسة المقطعية، تم جمع البيانات باستخدام استبانة ذاتية الإدارة تم توزيعها علىخمسة مائة و خمسة عشر مشارك (٢٠-٤٩ عاما) من أبو ظبي ودبي وعجمان والشارقة. النتائج: من بين ٥٠٠ مشارك، بلغ متوسط مجموع درجات المعرفة ٥٦.٤٪. لم يكن هناك ارتباط بين المعرفة بين أولئك الذين عانوا من حصى الكلى والذين لم يصابوا بها. كان وجود تاريخ عائلي بتشخيص حصى الكلى يزيد من خطر الإصابة بحصى الكلى بمعدل ٢.٢٧. وأظهرت النتائج أن المشاركين الذين كان لديهم علامات وأعراض وتشخيص وعلاج حصى الكلى، كان لديهم مستوى جيد من المعرفة بعد تحليل مصدر المعرفة، ولكن كان هناك مستوى ضئيل من المعرفة بخصوص العوامل الغذائية المتعلقة بحصى الكلى. كان للإنترنت ووسائل الإعلام دور أكبر بضعفين من الأطباء في تثقيف السكّان. الاستنتاجات: استطاعت هذه الدراسة أن توضح أن سكّان الإمارات على دراية ببعض الجوانب المتعلقة بحصوات الكلى ولكن على غير دراية بشأن عوامل الخطر التبعية. وهذا يسلط الضوء على أهمية تعزيز التعليم من خلال الحملات الصحية. Abstract: Objectives: The prevalence of kidney stones is increasing worldwide. Multiple risk factors are believed to contribute to the development of kidney stones such as lifestyle, diet, and global warming. In the United Arab Emirates (UAE), there has been limited research exploring the prevalence and risk factors of kidney stones. This study attempts to assess the understanding and prevalence of kidney stones among adults in the UAE. Methods: In this cross-sectional study, data were collected using a self-administered questionnaire, distributed among 515 participants (20–49 years old) from Abu Dhabi, Dubai, Ajman, and Sharjah states. IBM SPSS version 25 was used for data analysis. Results: The mean of knowledge score was 56.4% (n = 500). There was no correlation between the knowledge of those who had experienced kidney stones and those who did not. Furthermore, a family history of kidney stones increased the risk of developing stones by 2.27 times. Among participants reporting signs, symptoms, diagnosis, and the management of kidney stones, the knowledge and understanding about kidney stones was high. However, the perceptions of the same cohort about dietary precautions were limited. While analysing the sources of knowledge, the Internet and mass media were twice as important as physicians in educating the population. Conclusion: This study shows that the study cohort from the UAE population was aware of certain aspects of kidney stones but was quite naïve about its consequential risk factors. This highlights the importance of promoting education about kidney stones through health campaigns.
- Published
- 2021
- Full Text
- View/download PDF
24. Comparative Study of Silver Nanoparticles Inhibital and Ul-traviolet Array Activity Against Staphylococcus aureus
- Author
-
Al-Awadi, Saja Z., Hasan, Hussain S., and Labeeb Ahmed Alzubaidi
- Subjects
AgNPs ,Antibacterial, Activity ,MR S. aureus ,UV - Abstract
There was a need to explore for other methods of treating these bacteria because S. aureus was so widely resistant to antibiotics. Silver nanoparticles are one of these substances. This study's objectives are to determine the best biological activity concentration and compare it to the effectiveness of ultra-violate irradiation at various exposure times and distances. It also aims to assess the inhibitor activity of silver nanoparticles against a multi antibiotic-resistant S. aureus bacteria. Silver nanoparticles were chemically synthesized using silver nitrate, and they were analyzed using UV-Vis spectroscopy (UV-Vis), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-Transform infrared spectroscopy (FTIR), The findings demonstrated that bacteria with a concentration of (1.5 x 107) cells/ml were most highly inhibited by silver nanoparticles in 307.4 ppm concentration. As a result of UV irradiation's efficiency, The results showed the best concentration of silver nanoparticles with ultraviolet arrays at a time of 3 minutes and a distance of 4 mm, in addition synergistic effect of silver nanoparticles at a concentration (307.4 ppm) and at a time of uv Irradiation in 3 minutes and a distance of 4 mm to a decrease the bacterial growth about zero. The highest inhibitor activity was in a time of 12 minutes and the bacterial growth reached (5 cell/ ml), and by using It fully kills germs when exposed at the right angle and for the right amount of time to ultraviolet light. The results showed that bacteria can be impacted by even very lowering concentration of silver nanoparticles, and that ultraviolet irradiation of bacteria at different time and distances dramatically inhibited bacterial development, ISSN:1003-3289 Fuxing Road NO.15, Haidian District Beijing, 100038 P.R.China. E-mail: cjournal516@gmail.com
- Published
- 2022
- Full Text
- View/download PDF
25. Migraine Headache and the Risk of Depression
- Author
-
Hussain A, Al Ghadeer, Sadiq A, Al Salman, Zahr M, Alshakhs, Jehad H, Alghanim, Abdulelah A, Alneamah, Hussain S, Almazyadi, Hashem H, Alalawi, Murtada I, AlHassan, Bashayr S, Alsuwailem, Amjad A, Albonasser, Hussain I, Aljohar, Yazeed M, Alhammadi, Fatimah M, Almoaibed, Yaqot A, Al Ali, and Abdullah I, Alali
- Subjects
General Engineering - Abstract
Migraine is a primary headache and a complicated neurological disorder with sensory and autonomic abnormalities. Many variables, including genetic and psychological ones, contribute to migraine onset and development. Anxiety and depression are typical psychiatric comorbidities among migraineurs. This kind of comorbidity increased migraine chronicity, treatment effectiveness, and the likelihood of additional comorbidities. The purpose of this research was to determine the prevalence of depression among Saudi migraine sufferers in AlAhsa. Descriptive cross-sectional research of 101 migraine patients at King Fahd Hospital-Hofuf, AlAhsa, Saudi Arabia from May to December 2021. Depression was assessed by Patient Health Questionnaire which is a reliable tool (PHQ-9). The PHQ-9 measures the presence and severity of depression. Consider sociodemographic, clinical, and individual variations that impact migraine development and prognosis. Results: The inclusion criteria were satisfied by 94 migraine patients in total, with a mean age of 36.9 ± 9 years and they are predominantly females 75.5%. The majority of the participants (76.6%) were on medication to relieve migraine attacks and only 13.9% reported that75% of attacks were relieved by medication. Almost all of the patients (96.8%) used to drink coffee and tea. The prevalence of depression and migraine was revealed to be 42.6% mild and 8.5% severe among the participants. Four statistically significant correlations (p0.05) were young age, being female, low level of education at higher risk to have depression compared to another group of migraineurs. A neurological disorder that commonly causes disability is migraine. Numerous studies have shown that mood disorders and migraines are often co-occurring, and these individuals are more likely to have a migraine-related disability. This research has shown that it is beneficial to prevent psychiatric comorbidity by using PHQ-9 as a regular screening tool for migraine patients.
- Published
- 2022
- Full Text
- View/download PDF
26. Get Out the Vote: A Framework to Mobilize Medical Professionals to Vote
- Author
-
Hussain S. Lalani and Arthur S. Hong
- Subjects
Politics ,Internal Medicine ,Humans ,General Medicine - Published
- 2022
27. Atmospheric Sciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science
- Author
-
Blanken, PD, Brunet, D, Dominguez, C, Goursaud Oger, S, Hussain, S, Jain, M, Koren, G, Mu, Y, Ray, P, Saxena, P, Sonwani, S, Sur, D, Global Ecohydrology and Sustainability, Environmental Sciences, Blanken, PD [0000-0002-7405-2220], Brunet, D [0000-0002-5725-0866], Dominguez, C [0000-0002-2787-052X], Goursaud Oger, S [0000-0002-9990-4258], Hussain, S [0000-0003-1317-5259], Jain, M [0000-0001-6660-1181], Koren, G [0000-0002-2275-0713], Mu, Y [0000-0002-7857-5707], Ray, P [0000-0001-8924-1852], Saxena, P [0000-0002-3682-8622], Sonwani, S [0000-0002-2231-1577], Sur, D [0000-0001-9349-086X], and Apollo - University of Cambridge Repository
- Subjects
networked science ,open science ,Earth and Planetary Sciences(all) ,General Earth and Planetary Sciences ,integrated science ,Environmental Science (miscellaneous) ,atmospheric sciences ,coordinated science - Abstract
This collaborative article discusses the opportunities and challenges of adopting integrated, coordinated, open, and networked (ICON) principles in atmospheric sciences. From the global nature of the atmosphere, there has always been a need for atmospheric science to be an ICON science. With the help of evolving technology, it is possible to go further in implementing and spreading the ICON principles for productive global collaboration. In particular, technology transfer and applications could be approached with reproducibility in mind, and data‐sharing infrastructure could enable easier and better international collaboration. There are, however, various challenges in following the ICON principles in the acquisition, quality control, and maintenance of data, and the publication of results in a systematic way. Moreover, the extent of such issues varies geographically and hence poses different challenges to implementing ICON principles. In this commentary article, we briefly state our perspectives on the state of ICON, challenges we have met, and future opportunities. Furthermore, we describe how atmospheric science researchers have benefited from these collaborative multi‐dimensional approaches that fulfill the core goal of ICON.
- Published
- 2022
28. Characterization of a Closed Loop Pulsating Heat Pipe Using Ethanol with Different Angles
- Author
-
Israa S. Ahmed, Ayad M. Al Jubori, and Hussain S. Abd
- Subjects
Fluid Flow and Transfer Processes ,Heat pipe ,Materials science ,Mechanical Engineering ,Mechanics ,Condensed Matter Physics ,Closed loop ,Characterization (materials science) - Abstract
In low-temperature difference, a closed-loop pulsating heat pipe (CLPHP) can be used as a cooling device due to its capability to transfer heat. The thermal performance of the CLPHP is affected by the working fluids. In this work, the effects of some operating parameters such as using ethanol as working fluid with 0.5 filling ratio, orientation, and power inputs are offered based on experimental study. Where the CLPHP was constructed and tested to achieve a better vision into the effect of orientation of 0°, 15°, 30°, 45°, and 90°, and power input of 50 W, 115 W, 215 W, and 450 W on the heat transfer characteristics and the thermal performance. The results indicated that the minimum thermal resistance can be reached at 0.1585 (℃/W) with an orientation of 90° and a power input of 450 W. The results revealed that the inclination angles and power inputs had considerable influence on the enhancement of the thermal performance of the CLPHP. For the low boiling temperature of the working fluid, the power input is more favorable because of fast startup compared with a high power input that leads to some difficulties like the dry-out phenomenon.
- Published
- 2021
- Full Text
- View/download PDF
29. Magnetic Resonance Imaging Breast Scan Classification based on Texture Features and Long Short-Term Memory Model
- Author
-
Hussain S. Hasan, Ali M. Hasan, and Suha Raheem Hilal
- Subjects
Materials science ,medicine.diagnostic_test ,business.industry ,Cognitive Neuroscience ,Magnetic resonance imaging ,Pattern recognition ,Atomic and Molecular Physics, and Optics ,Breast scan ,Long short term memory ,Developmental Neuroscience ,medicine ,Texture (crystalline) ,Artificial intelligence ,business - Abstract
The aim of study is building new program for processing MRI images using MATLAB and to investigate different breast MRI detection algorithms that inform normal and abnormal scans of MRI. In this research an algorithm is proposed to extract texture feature and inform normal and abnormal scans of MRI. First, the MRI scans are pre- processed by image enhancement, intensity normalization, background segmentation and detection of mirror symmetry of breast. Second, the proposed gray level co- occurrence matrix (GLCM) and gray level run length matrix (GLRLM) methods are used to extract texture features from MRI T2-weighted and STIR images. Finally, these features are classified into normal and abnormal by using long short term memory (LSTM) model. The research will be validated using 326 datasets that downloaded from cancer imaging archive (TCIA). The achieved classification accuracy was 98.80%.
- Published
- 2021
- Full Text
- View/download PDF
30. Overview on Causes and Management of Upper Extremity Ischemia- A Review
- Author
-
Sultan Abdulaziz Alzhrani, Hashem Bark Awadh Abood, Raghad Mohammed Alsafri, Rayan Hussain S. Alobaidi, Barak Abdullah Alsubaie, Mohammed Ahmed A. Al Abbad, Alanoud Awaji Hakami, Hayat Mohammed Alharbi, Mohammad Saleh Almarri, Hamzah Hussain Owaydhah, and Faisal Mohammed Khoshaim
- Subjects
medicine.medical_specialty ,Lower limb ischemia ,business.industry ,medicine.medical_treatment ,Ischemia ,Embolectomy ,medicine.disease ,Revascularization ,Limb ischemia ,Arterial occlusion ,Internal medicine ,medicine ,Cardiology ,Thrombolytic Agent ,business ,Upper limb ischemia - Abstract
Acute upper limb ischemia (AULI) occurs less often than acute lower limb ischemia, contributing for even less than 5% of all limb ischemia instances. It is known to be rare vascular emergency with serious long-term effects if not treated promptly. Timely detection and localization of the arterial occlusion are critical for effective revascularization and limb salvage. Surgical procedure, most commonly embolectomy, has become the standard of care for embolic or thrombotic AULI. Vascular repair is synonymous with morbidity and death, which can be avoided in some circumstances. Nonsurgical options such as endovascular procedures, thrombolytic agents, and anticoagulation therapy continue to advance, but their function in upper extremity ischemia remains unclear. In this Review, we discuss causes and management of acute upper extremity ischemia. The paper concluded that longer symptoms mean greater likelihood of functional sequelae. Surgical management is the most commonly used and best treatment. It is also possible that conservative management is being underreported. The prognosis of upper extremity ischemia is related to prompt and appropriate treatment and is predictable based on initial serum LDH levels.
- Published
- 2021
- Full Text
- View/download PDF
31. Visual Acuity, Intraocular Pressure, and Macular Thickness in Patients Undergoing Dialysis
- Author
-
Hussain S. Hasan, Monawar Muhsin Jabr, and Hind Ahmed Mahdi
- Subjects
Intraocular pressure ,medicine.medical_specialty ,Visual acuity ,genetic structures ,business.industry ,Cognitive Neuroscience ,eye diseases ,Atomic and Molecular Physics, and Optics ,Developmental Neuroscience ,Ophthalmology ,medicine ,In patient ,sense organs ,medicine.symptom ,Dialysis (biochemistry) ,business - Abstract
Background: Chronic kidney disease (CKD) is a public health problem over all the world. CKD may also be defined by the presence of kidney damage or a reduced glomerular filtration rate (GFR), which is the best overall indicator or index of kidney function. CKD patients are usually treated using kidney dialysis (hemodialysis) that uses a blood filtration mechanism (HD). Several metabolic parameters, such as blood urea, sodium, potassium, and glucose levels, can alter during HD. Osmotic alterations in blood, aqueous and vitreous humor, and other extracellular fluids arise from these fluctuations. That also can affect visual acuity, intraocular pressure (IOP), and retinal thickness. Aim of the Study: To evaluate some of the ocular findings undergoing HD to keep prevent the loss of patient vision such as visual acuity (VA), intraocular pressure (IOP), central corneal thickness (CCT), central Foveal Thickness (CFT), retinal nerve fiber layer (RNFL). Patient& Methods: This is a cohort (prospective) design study. This study including Seventy nine patients divided into two groups the first group from one week to six month (9 femal & 18 males) another group over than six month (36 female & 16 male) the average age between (12 to 70 years). This research performed in the three places department of the eye in Al-Hussein hospital in Samawah city, Al-Haboby hospital, Al-Hussein hospital in Dhi Qar city finally in Al-Shaheed Gazy hospital and Baghdad teaching hospital in Baghdad. Examining Visual Acuity by Snellen chart & auto refractometer, IOP& CCT by (CT.1 Computerized Tonometer TOPCON), RNLF and Central Foveal Thickness by OCT (Carl ZEISS, TOPCON). The inclusion criteria were as follows: all the patients undergoing dialysis from one week to over six months. Exclusion criteria were as follows: the patients have diabetic, any patients have a hereditary disease or glaucoma history or laser therapy, or intraocular injection in the eye before dialysis, the patients have a problem in the eye before dialysis such as cataracts or opacity leads to does surgery, the patients who have a refractive error or wear glass had been also excluded. Result: Includes the results of seventy-nine patients (45 females and 34 males) with chronic kidney disease examined ocular findings before a session of dialysis divided into two groups based on their duration of dialysis. Group one with twenty-seven patients (9 female & 18 male) under dialysis from one week to six months with mean & standard deviation (3.2037, ± 1.89259), group tow with fifty tow patients (36 female & 16 male) under dialysis from the duration over than six months with mean & standard deviation (44.2308, ± 26.24367) respectively. Patients aged (12 to 70 years) had mean age & ± standard deviation (35.1481, ± 12.88918), (44.4038, ± 15.42249) for two groups respectively. Patients in two groups had IOP (Right eye), its mean & standard deviation (15, ± 2.34), (15.69, ± 2.56) for group one & group tow respectively. Also, patients had CCT (Right eye) with mean & standard deviation (5.3467E2, ± 39.00296), (5.2312E2, ± 30.44162) for group one & group tow respectively. Patients had CCT (Left) with mean & standard deviation (5.2878E2, ± 37.55748), (5.2179E2, ± 29.58957) for group one & group tow respectively. Patients in two groups had average thickness RNFL (Right eye) with mean & standard deviation (1.0604E2, ± 25.17551), (95.6154, ± 21.27150) for group one & group tow respectively. Also, patients had average thickness RNFL (left eye) with mean & standard deviation (1.0930E2, ±23.80177), (98.7500, ± 23.77334) for group one & group tow respectively. Conclusions: This study found CCT effective with dialysis tend to be thin (53 patient,18 patient in group one &35 in group two) and that will be had a threefold higher risk of developing glaucoma when compared with thick average because of the IOP value affected by it. Refractive error effective with dialysis & become was more prominent that can be shown in the group two have (40 patient from 52) while (15 patient from27) in the group one although a lot of them corrected to the BCVA. In conclusion high value of the C/D ratio formed about (45.57%, 53.16%) to the right &left eye respectively this value will be form important sign of risk factor to progressive of glaucomatous need to be alert in the future. Also our research reveals CFT effective undergoing dialysis the thick value was (56 in the right eye, 55 in the left eye) high compared with the thin (9 in the right&9 in the left eye) & normal (14 in the right eye, 15 in the left eye). All the two groups of patients will be effected by the duration of dialysis with a time.
- Published
- 2021
- Full Text
- View/download PDF
32. US public investment in development of mRNA covid-19 vaccines: retrospective cohort study
- Author
-
Hussain S Lalani, Sarosh Nagar, Ameet Sarpatwari, Rachel E Barenie, Jerry Avorn, Benjamin N Rome, and Aaron S Kesselheim
- Subjects
General Medicine - Abstract
ObjectiveTo estimate US public investment in the development of mRNA covid-19 vaccines.DesignRetrospective cohort study.SettingPublicly funded science from January 1985 to March 2022.Data sourcesNational Institutes of Health (NIH) Report Portfolio Online Reporting Tool Expenditures and Results (RePORTER) and other public databases. Government funded grants were scored as directly, indirectly, or not likely related to four key innovations underlying mRNA covid-19 vaccines—lipid nanoparticle, mRNA synthesis or modification, prefusion spike protein structure, and mRNA vaccine biotechnology—on the basis of principal investigator, project title, and abstract.Main outcome measureDirect public investment in research and vaccine development, stratified by the rationale, government funding agency, and pre-pandemic (1985-2019) versus pandemic (1 January 2020 to 31 March 2022).Results34 NIH funded research grants that were directly related to mRNA covid-19 vaccines were identified. These grants combined with other identified US government grants and contracts totaled $31.9bn (£26.3bn; €29.7bn), of which $337m was invested pre-pandemic. Pre-pandemic, the NIH invested $116m (35%) in basic and translational science related to mRNA vaccine technology, and the Biomedical Advanced Research and Development Authority (BARDA) ($148m; 44%) and the Department of Defense ($72m; 21%) invested in vaccine development. After the pandemic started, $29.2bn (92%) of US public funds purchased vaccines, $2.2bn (7%) supported clinical trials, and $108m (ConclusionsThe US government invested at least $31.9bn to develop, produce, and purchase mRNA covid-19 vaccines, including sizeable investments in the three decades before the pandemic through March 2022. These public investments translated into millions of lives saved and were crucial in developing the mRNA vaccine technology that also has the potential to tackle future pandemics and to treat diseases beyond covid-19. To maximize overall health impact, policy makers should ensure equitable global access to publicly funded health technologies.
- Published
- 2023
- Full Text
- View/download PDF
33. Orbital Exploration of Phobos by a Nano-satellite using Solar Electric Propulsion
- Author
-
Shuba Murthy, Amay Sareen, Effy Oommen John, Prajwal Jayaraman, and Mohamed Hussain S
- Published
- 2022
- Full Text
- View/download PDF
34. MRI Brain Scans Classification Using Bi-directional Modified Gray Level Co-occurrence Matrix and Long Short-Term Memory
- Author
-
Ali M. Hasan, Marwah Hamad Hasan, and Hussain S. Hasan
- Subjects
Gray level ,Long short term memory ,Co-occurrence matrix ,Nuclear magnetic resonance ,Developmental Neuroscience ,Computer science ,Cognitive Neuroscience ,Mri brain ,Atomic and Molecular Physics, and Optics - Published
- 2020
- Full Text
- View/download PDF
35. Preparation of Calcium Phosphate Nanoparticles: Study their Characterization and Antibacterial Activity
- Author
-
Ghassaq Tariq Al-Ubaidi, Zainab A. Fadhil Al-Mimar, and Hussain S. Hasan
- Subjects
biology ,Pharmaceutical Science ,chemistry.chemical_element ,Calcium ,Antimicrobial ,biology.organism_classification ,medicine.disease ,Minimum inhibitory concentration ,chemistry ,medicine ,MTT assay ,Fourier transform infrared spectroscopy ,Klebsiella pneumonia ,Antibacterial activity ,Bacteria ,Nuclear chemistry - Abstract
Calcium phosphate nanoparticles (CPNPs) have been synthesized by chemical precipitation method and were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The antibacterial activity against multi-drug resistant (MDR) gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumonia (K. pneumonia) was performed by well diffusion method, using different concentrations of CPNPs and different combinations of CPNPs with ciprofloxacin (CIP) (CIP-CPNP100, CIP-CPNP50, and CIP-CPNP25). The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were evaluated by the broth dilution method and optical density. Cytotoxicity of nanoparticles was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on polymorphonuclear cells. Results indicated that synthesized CPNPs sized 28.02 ± 3.2 nm in diameter as average, with distorted spherical shape appears as agglomerates. CPNPs showed no antibacterial activity against MDR bacteria, but combining them with CIP recorded antibacterial activity represented by inhibition zone against MDR bacteria. It was found that the inhibition zone increases when the concentration of CIP and particle size decreases. The MTT assay reveals the acceptable toxicity of the synthesized nanoparticles. The present study can be helpful to formulate nano-drug conjugates as antimicrobial agents in various fields of medical research.
- Published
- 2020
- Full Text
- View/download PDF
36. Knowledge and attitude of dentists towards ocular complications of intra-oral local anaesthesia: A survey-based study in Riyadh
- Author
-
Shahzeb H. Ansari, Khaled B. Almutairi, Firas N. Alhozaim, Assaf A. Albiebi, Bader M Saeedi, and Hussain S Al Nasrallah
- Published
- 2022
- Full Text
- View/download PDF
37. Quadripartitioned Neutrosophic Soft Graphs
- Author
-
Satham Hussain S., Jahir Hussain R., Isnaini Rosyida, and Said Broumi
- Abstract
The neutrosophic quadripartitioned soft model is a hybrid model by combining neutrosophic soft sets with quadripartitioned sets. This work concerns with the quadripartitioned neutrosophic soft graphs for treating neutrosophic soft information by employing the theory of quadripartitioned neutrosophic soft sets with graphs. Operations like Cartesian product, cross product, lexicographic product, and strong product of quadripartitioned neutrosophic soft graphs are established. The proposed concepts are explained with examples.
- Published
- 2022
- Full Text
- View/download PDF
38. Facilitating safe discharge through predicting disease progression in moderate COVID-19: development and validation of a prediction model in resource-limited settings
- Author
-
Chandna A, PRIORITISE Study Group, Mahajan R, Gautam P, Mwandigha L, Gunasekaran K, Bhusan D, Cheung ATL, Day N, Dittrich S, Dondorp A, Geevar T, Ghattamaneni SR, Hussain S, Jimenez C, Karthikeyan R, Kumar S, Kumar SM, Kumar V, Kundu D, Lakshmanan A, Manesh A, Menggred C, Moorthy M, Osborn J, Richard-Greenblatt M, Sharma S, Singh VK, Suri J, Suzuki S, Tubprasert J, Turner P, Villanueva AMG, Waithira N, Kumar P, Varghese GM, Koshiaris C, Lubell Y, and Burza S
- Abstract
INTRODUCTION In locations where few people have received Covid-19 vaccines, health systems remain vulnerable to spikes in SARS-CoV-2 infections. Triage tools, which could include biomarkers, to identify patients with moderate Covid-19 infection suitable for community-based management would be useful in the event of surges. In consultation with FIND (Geneva, Switzerland) we shortlisted seven biomarkers for evaluation, all measurable using point-of-care tests, and either currently available or in late-stage development. METHODS We prospectively recruited unvaccinated adults with laboratory-confirmed Covid-19 presenting to two hospitals in India with moderate symptoms, in order to develop and validate a clinical prediction model to rule-out progression to supplemental oxygen requirement. Moderate disease was defined as oxygen saturation (SpO2) ≥ 94% and respiratory rate < 30 breaths per minute (bpm), in the context of systemic symptoms (breathlessness or fever and chest pain, abdominal pain, diarrhoea, or severe myalgia). All patients had clinical observations and blood collected at presentation, and were followed up for 14 days for the primary outcome, defined as any of the following: SpO2 < 94%; respiratory rate > 30 bpm; SpO2/fraction of inspired oxygen (FiO2) < 400; or death. We specified a priori that each model would contain three easily ascertained clinical parameters (age, sex, and SpO2) and one of the seven biomarkers (C-reactive protein (CRP), D-dimer, interleukin-6 (IL-6), neutrophil-to-lymphocyte ratio (NLR), procalcitonin (PCT), soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), or soluble urokinase plasminogen activator receptor (suPAR)), to ensure the models would be implementable in high patient-throughput, low-resource settings. We evaluated the models’ discrimination, calibration, and clinical utility in a held-out external temporal validation cohort. ETHICS Ethical approval was given by the ethics committees of AIIMS and CMC, India, the Oxford Tropical Research Ethics Committee, UK; and by the MSF Ethics Review Board. ClinicalTrials.gov number, NCT04441372. RESULTS 426 participants were recruited, of which 89 (21.0%) met the primary outcome. 257 participants comprised the development, and 166 the validation, cohorts. The three models containing NLR, suPAR, or IL-6 demonstrated promising discrimination (c-statistics: 0.72 to 0.74) and calibration (calibration slopes: 1.01 to 1.05) in the held-out validation cohort. Furthermore, they provided greater utility than a model containing the clinical parameters alone (c-statistic = 0.66; calibration slope = 0.68). The inclusion of either NLR or suPAR improved predictive performance such that the ratio of correctly to incorrectly discharged patients increased from 10:1 to 23:1 or 25:1 respectively. Including IL-6 resulted in a similar proportion (~21%) of correctly discharged patients as the clinical model, but without missing any patients requiring supplemental oxygen. CONCLUSION We present three clinical prediction models that could help clinicians identify patients with moderate Covid-19 suitable for community-based management. These models are readily implementable and, if validated, could be of particular relevance for resource-limited settings. CONFLICTS OF INTEREST None declared.
- Published
- 2022
- Full Text
- View/download PDF
39. Frequency of Chemotherapy Induced Febrile Neutropenia
- Author
-
Hussain S, Hassan SUI, Muteaullah A, Khan F, and Ahmad B
- Subjects
General Medicine - Published
- 2022
- Full Text
- View/download PDF
40. On the move: spatial ecology and habitat use of red fox in the Trans-Himalayan cold desert
- Author
-
Hussain S. Reshamwala, Pankaj Raina, Zehidul Hussain, Shaheer Khan, Rodolfo Dirzo, and Bilal Habib
- Subjects
General Neuroscience ,General Medicine ,General Agricultural and Biological Sciences ,General Biochemistry, Genetics and Molecular Biology - Abstract
Red fox (Vulpes vulpes) is the most widespread wild carnivore globally, occupying diverse habitats. The species is known for its adaptability to survive in dynamic anthropogenic landscapes. Despite being one of the most extensively studied carnivores, there is a dearth of information on red fox from the Trans-Himalayan region. We studied the home range sizes of red fox using the different estimation methods: minimum convex polygon (MCP), kernel density estimator (KDE), local convex hull (LoCoH) and Brownian-bridge movement model (BBMM). We analysed the daily movement and assessed the habitat selection with respect to topographic factors (ruggedness, elevation and slope), environmental factor (distance to water) and anthropogenic factors (distance to road and human settlements). We captured and GPS-collared six red fox individuals (three males and three females) from Chiktan and one female from Hemis National Park, Ladakh, India. The collars were programmed to record GPS fixes every 15-min. The average BBMM home range estimate (95% contour) was 22.40 ± 12.12 SD km2 (range 3.81–32.93 km2) and the average core area (50% contour) was 1.87 ± 0.86 SD km2 (range 0.55–2.69 km2). The estimated average daily movement of red fox was 17.76 ± 8.45 SD km/d (range 10.91–34.22 km/d). Red fox significantly selected lower elevations with less rugged terrain and were positively associated with water. This is the first study in the Trans-Himalayan landscape which aims to understand the daily movement of red fox at a fine temporal scale. Studying the movement and home range sizes helps understand the daily energetics and nutritional requirements of red fox. Movement information of a species is important for the prioritisation of areas for conservation and can aid in understanding ecosystem functioning and landscape management.
- Published
- 2021
41. A Novel Methodology to Validate and Evaluate Combined Cyber Attacks in Automated Power Systems Using Real Time Digital Simulation
- Author
-
Hussain, Shahbaz, Hussain, S. M. Suhail, Iqbal, Atif, Zanero, Stefano, and Ragaini, Enrico
- Published
- 2021
- Full Text
- View/download PDF
42. Epiploic Appendagitis Clinically Masquerading as an Acute Diverticulitis
- Author
-
Razan A Khafaji, Hussain S Ghandourah, Sarah K Altamimi, Afnan A Alwarthan, Renda A Alhabib, Mazen N Alaiyar, Ibrahim A Alomar, Meshari I Alayshan, Mohammed S Almasoudi, Hashem A Jaml Allil, Shahad Z Munshi, Sarah K Aljamri, Basil S Bagadeem, Motaz S Attar, and Faisal Al-Hawaj
- Subjects
acute diverticulitis ,General Surgery ,Emergency Medicine ,abdominal pain ,General Engineering ,case report ,computed tomography ,epiploic appendagitis ,Family/General Practice - Abstract
Acute diverticulitis is a prevalent surgical condition that typically presents with lower abdominal pain and tenderness. However, the clinical and laboratory findings of diverticulitis are non-specific and other conditions may give similar manifestations. We present the case of a middle-aged woman with a left lower quadrant abdominal pain and fever of three days duration. On examination, she had tachycardia and localized tenderness in the left iliac fossa with rebound tenderness. There were no signs of peritonitis, including the rigid abdomen and decreased bowel sounds. The laboratory findings were suggestive of an inflammatory or infectious process. A computed tomography scan of the abdomen demonstrated a fat-density lesion anterior to the descending colon representing epiploic appendagitis. The patient was managed conservatively with non-steroidal anti-inflammatory drugs (lornoxicam 8 mg). The patient experienced gradual improvement and was discharged after four days of hospitalization. No surgical intervention was needed. The case highlighted the importance of considering epiploic appendagitis in the differential diagnosis of acute diverticulitis. An accurate diagnosis will prevent the patient from having unnecessary surgeries as conservative management is often sufficient in patients with epiploic appendagitis.
- Published
- 2021
- Full Text
- View/download PDF
43. Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry
- Author
-
Proietti, M., Vitolo, M., Harrison, S. L., Lane, D. A., Fauchier, L., Marin, F., Nabauer, M., Potpara, T. S., Dan, G. -A., Boriani, G., Lip, G. Y. H., Boriani (Chair), G., Tavazzi, L., Maggioni, A. P., Potpara, T., Kalarus, Z., Ferrari, R., Shantsila, A., Goda, A., Mairesse, G., Shalganov, T., Antoniades, L., Taborsky, M., Riahi, S., Muda, P., Garcia Bolao, I., Piot, O., Etsadashvili, K., Simantirakis, E. N., Haim, M., Azhari, A., Najafian, J., Santini, M., Mirrakhimov, E., Kulzida, K., Erglis, A., Poposka, L., Burg, M. R., Crijns, H., Erkuner, O., Atar, D., Lenarczyk, R., Martins Oliveira, M., Shah, D., Serdechnaya, E., Diker, E., Lane, D., Zera, E., Ekmekciu, U., Paparisto, V., Tase, M., Gjergo, H., Dragoti, J., Ciutea, M., Ahadi, N., el Husseini, Z., Raepers, M., Leroy, J., Haushan, P., Jourdan, A., Lepiece, C., Desteghe, L., Vijgen, J., Koopman, P., Van Genechten, G., Heidbuchel, H., Boussy, T., De Coninck, M., Van Eeckhoutte, H., Bouckaert, N., Friart, A., Boreux, J., Arend, C., Evrard, P., Stefan, L., Hoffer, E., Herzet, J., Massoz, M., Celentano, C., Sprynger, M., Pierard, L., Melon, P., Van Hauwaert, B., Kuppens, C., Faes, D., Van Lier, D., Van Dorpe, A., Gerardy, A., Deceuninck, O., Xhaet, O., Dormal, F., Ballant, E., Blommaert, D., Yakova, D., Hristov, M., Yncheva, T., Stancheva, N., Tisheva, S., Tokmakova, M., Nikolov, F., Gencheva, D., Kunev, B., Stoyanov, M., Marchov, D., Gelev, V., Traykov, V., Kisheva, A., Tsvyatkov, H., Shtereva, R., Bakalska-Georgieva, S., Slavcheva, S., Yotov, Y., Kubickova, M., Marni Joensen, A., Gammelmark, A., Hvilsted Rasmussen, L., Dinesen, P., Krogh Veno, S., Sorensen, B., Korsgaard, A., Andersen, K., Fragtrup Hellum, C., Svenningsen, A., Nyvad, O., Wiggers, P., May, O., Aarup, A., Graversen, B., Jensen, L., Andersen, M., Svejgaard, M., Vester, S., Hansen, S., Lynggaard, V., Ciudad, M., Vettus, R., Maestre, A., Castano, S., Cheggour, S., Poulard, J., Mouquet, V., Leparree, S., Bouet, J., Taieb, J., Doucy, A., Duquenne, H., Furber, A., Dupuis, J., Rautureau, J., Font, M., Damiano, P., Lacrimini, M., Abalea, J., Boismal, S., Menez, T., Mansourati, J., Range, G., Gorka, H., Laure, C., Vassaliere, C., Elbaz, N., Lellouche, N., Djouadi, K., Roubille, F., Dietz, D., Davy, J., Granier, M., Winum, P., Leperchois-Jacquey, C., Kassim, H., Marijon, E., Le Heuzey, J., Fedida, J., Maupain, C., Himbert, C., Gandjbakhch, E., Hidden-Lucet, F., Duthoit, G., Badenco, N., Chastre, T., Waintraub, X., Oudihat, M., Lacoste, J., Stephan, C., Bader, H., Delarche, N., Giry, L., Arnaud, D., Lopez, C., Boury, F., Brunello, I., Lefevre, M., Mingam, R., Haissaguerre, M., Le Bidan, M., Pavin, D., Le Moal, V., Leclercq, C., Beitar, T., Martel, I., Schmid, A., Sadki, N., Romeyer-Bouchard, C., Da Costa, A., Arnault, I., Boyer, M., Piat, C., Lozance, N., Nastevska, S., Doneva, A., Fortomaroska Milevska, B., Sheshoski, B., Petroska, K., Taneska, N., Bakrecheski, N., Lazarovska, K., Jovevska, S., Ristovski, V., Antovski, A., Lazarova, E., Kotlar, I., Taleski, J., Kedev, S., Zlatanovik, N., Jordanova, S., Bajraktarova Proseva, T., Doncovska, S., Maisuradze, D., Esakia, A., Sagirashvili, E., Lartsuliani, K., Natelashvili, N., Gumberidze, N., Gvenetadze, R., Gotonelia, N., Kuridze, N., Papiashvili, G., Menabde, I., Gloggler, S., Napp, A., Lebherz, C., Romero, H., Schmitz, K., Berger, M., Zink, M., Koster, S., Sachse, J., Vonderhagen, E., Soiron, G., Mischke, K., Reith, R., Schneider, M., Rieker, W., Boscher, D., Taschareck, A., Beer, A., Oster, D., Ritter, O., Adamczewski, J., Walter, S., Frommhold, A., Luckner, E., Richter, J., Schellner, M., Landgraf, S., Bartholome, S., Naumann, R., Schoeler, J., Westermeier, D., William, F., Wilhelm, K., Maerkl, M., Oekinghaus, R., Denart, M., Kriete, M., Tebbe, U., Scheibner, T., Gruber, M., Gerlach, A., Beckendorf, C., Anneken, L., Arnold, M., Lengerer, S., Bal, Z., Uecker, C., Fortsch, H., Fechner, S., Mages, V., Martens, E., Methe, H., Schmidt, T., Schaeffer, B., Hoffmann, B., Moser, J., Heitmann, K., Willems, S., Klaus, C., Lange, I., Durak, M., Esen, E., Mibach, F., Mibach, H., Utech, A., Gabelmann, M., Stumm, R., Landle, V., Gartner, C., Goerg, C., Kaul, N., Messer, S., Burkhardt, D., Sander, C., Orthen, R., Kaes, S., Baumer, A., Dodos, F., Barth, A., Schaeffer, G., Gaertner, J., Winkler, J., Fahrig, A., Aring, J., Wenzel, I., Steiner, S., Kliesch, A., Kratz, E., Winter, K., Schneider, P., Haag, A., Mutscher, I., Bosch, R., Taggeselle, J., Meixner, S., Schnabel, A., Shamalla, A., Hotz, H., Korinth, A., Rheinert, C., Mehltretter, G., Schon, B., Schon, N., Starflinger, A., Englmann, E., Baytok, G., Laschinger, T., Ritscher, G., Gerth, A., Dechering, D., Eckardt, L., Kuhlmann, M., Proskynitopoulos, N., Brunn, J., Foth, K., Axthelm, C., Hohensee, H., Eberhard, K., Turbanisch, S., Hassler, N., Koestler, A., Stenzel, G., Kschiwan, D., Schwefer, M., Neiner, S., Hettwer, S., Haeussler-Schuchardt, M., Degenhardt, R., Sennhenn, S., Brendel, M., Stoehr, A., Widjaja, W., Loehndorf, S., Logemann, A., Hoskamp, J., Grundt, J., Block, M., Ulrych, R., Reithmeier, A., Panagopoulos, V., Martignani, C., Bernucci, D., Fantecchi, E., Diemberger, I., Ziacchi, M., Biffi, M., Cimaglia, P., Frisoni, J., Giannini, I., Boni, S., Fumagalli, S., Pupo, S., Di Chiara, A., Mirone, P., Pesce, F., Zoccali, C., Malavasi, V. L., Mussagaliyeva, A., Ahyt, B., Salihova, Z., Koshum-Bayeva, K., Kerimkulova, A., Bairamukova, A., Lurina, B., Zuzans, R., Jegere, S., Mintale, I., Kupics, K., Jubele, K., Kalejs, O., Vanhear, K., Burg, M., Cachia, M., Abela, E., Warwicker, S., Tabone, T., Xuereb, R., Asanovic, D., Drakalovic, D., Vukmirovic, M., Pavlovic, N., Music, L., Bulatovic, N., Boskovic, A., Uiterwaal, H., Bijsterveld, N., De Groot, J., Neefs, J., van den Berg, N., Piersma, F., Wilde, A., Hagens, V., Van Es, J., Van Opstal, J., Van Rennes, B., Verheij, H., Breukers, W., Tjeerdsma, G., Nijmeijer, R., Wegink, D., Binnema, R., Said, S., Philippens, S., van Doorn, W., Szili-Torok, T., Bhagwandien, R., Janse, P., Muskens, A., van Eck, M., Gevers, R., van der Ven, N., Duygun, A., Rahel, B., Meeder, J., Vold, A., Holst Hansen, C., Engset, I., Dyduch-Fejklowicz, B., Koba, E., Cichocka, M., Sokal, A., Kubicius, A., Pruchniewicz, E., Kowalik-Sztylc, A., Czapla, W., Mroz, I., Kozlowski, M., Pawlowski, T., Tendera, M., Winiarska-Filipek, A., Fidyk, A., Slowikowski, A., Haberka, M., Lachor-Broda, M., Biedron, M., Gasior, Z., Kolodziej, M., Janion, M., Gorczyca-Michta, I., Wozakowska-Kaplon, B., Stasiak, M., Jakubowski, P., Ciurus, T., Drozdz, J., Simiera, M., Zajac, P., Wcislo, T., Zycinski, P., Kasprzak, J., Olejnik, A., Harc-Dyl, E., Miarka, J., Pasieka, M., Zieminska-Luc, M., Bujak, W., Sliwinski, A., Grech, A., Morka, J., Petrykowska, K., Prasal, M., Hordynski, G., Feusette, P., Lipski, P., Wester, A., Streb, W., Romanek, J., Wozniak, P., Chlebus, M., Szafarz, P., Stanik, W., Zakrzewski, M., Kazmierczak, J., Przybylska, A., Skorek, E., Blaszczyk, H., Stepien, M., Szabowski, S., Krysiak, W., Szymanska, M., Karasinski, J., Blicharz, J., Skura, M., Halas, K., Michalczyk, L., Orski, Z., Krzyzanowski, K., Skrobowski, A., Zielinski, L., Tomaszewska-Kiecana, M., Dluzniewski, M., Kiliszek, M., Peller, M., Budnik, M., Balsam, P., Opolski, G., Tyminska, A., Ozieranski, K., Wancerz, A., Borowiec, A., Majos, E., Dabrowski, R., Szwed, H., Musialik-Lydka, A., Leopold-Jadczyk, A., Jedrzejczyk-Patej, E., Koziel, M., Mazurek, M., Krzemien-Wolska, K., Starosta, P., Nowalany-Kozielska, E., Orzechowska, A., Szpot, M., Staszel, M., Almeida, S., Pereira, H., Brandao Alves, L., Miranda, R., Ribeiro, L., Costa, F., Morgado, F., Carmo, P., Galvao Santos, P., Bernardo, R., Adragao, P., Ferreira da Silva, G., Peres, M., Alves, M., Leal, M., Cordeiro, A., Magalhaes, P., Fontes, P., Leao, S., Delgado, A., Costa, A., Marmelo, B., Rodrigues, B., Moreira, D., Santos, J., Santos, L., Terchet, A., Darabantiu, D., Mercea, S., Turcin Halka, V., Pop Moldovan, A., Gabor, A., Doka, B., Catanescu, G., Rus, H., Oboroceanu, L., Bobescu, E., Popescu, R., Dan, A., Buzea, A., Daha, I., Dan, G., Neuhoff, I., Baluta, M., Ploesteanu, R., Dumitrache, N., Vintila, M., Daraban, A., Japie, C., Badila, E., Tewelde, H., Hostiuc, M., Frunza, S., Tintea, E., Bartos, D., Ciobanu, A., Popescu, I., Toma, N., Gherghinescu, C., Cretu, D., Patrascu, N., Stoicescu, C., Udroiu, C., Bicescu, G., Vintila, V., Vinereanu, D., Cinteza, M., Rimbas, R., Grecu, M., Cozma, A., Boros, F., Ille, M., Tica, O., Tor, R., Corina, A., Jeewooth, A., Maria, B., Georgiana, C., Natalia, C., Alin, D., Dinu-Andrei, D., Livia, M., Daniela, R., Larisa, R., Umaar, S., Tamara, T., Loachim Popescu, M., Nistor, D., Sus, I., Coborosanu, O., Alina-Ramona, N., Dan, R., Petrescu, L., Ionescu, G., Vacarescu, C., Goanta, E., Mangea, M., Ionac, A., Mornos, C., Cozma, D., Pescariu, S., Solodovnicova, E., Soldatova, I., Shutova, J., Tjuleneva, L., Zubova, T., Uskov, V., Obukhov, D., Rusanova, G., Isakova, N., Odinsova, S., Arhipova, T., Kazakevich, E., Zavyalova, O., Novikova, T., Riabaia, I., Zhigalov, S., Drozdova, E., Luchkina, I., Monogarova, Y., Hegya, D., Rodionova, L., Nevzorova, V., Lusanova, O., Arandjelovic, A., Toncev, D., Milanov, M., Sekularac, N., Zdravkovic, M., Hinic, S., Dimkovic, S., Acimovic, T., Saric, J., Polovina, M., Vujisic-Tesic, B., Nedeljkovic, M., Zlatar, M., Asanin, M., Vasic, V., Popovic, Z., Djikic, D., Sipic, M., Peric, V., Dejanovic, B., Milosevic, N., Stevanovic, A., Andric, A., Pencic, B., Pavlovic-Kleut, M., Celic, V., Pavlovic, M., Petrovic, M., Vuleta, M., Petrovic, N., Simovic, S., Savovic, Z., Milanov, S., Davidovic, G., Iric-Cupic, V., Simonovic, D., Stojanovic, M., Stojanovic, S., Mitic, V., Ilic, V., Petrovic, D., Deljanin Ilic, M., Ilic, S., Stoickov, V., Markovic, S., Kovacevic, S., Garcia Fernandez, A., Perez Cabeza, A., Anguita, M., Tercedor Sanchez, L., Mau, E., Loayssa, J., Ayarra, M., Carpintero, M., Roldan Rabadan, I., Gil Ortega, M., Tello Montoliu, A., Orenes Pinero, E., Manzano Fernandez, S., Romero Aniorte, A., Veliz Martinez, A., Quintana Giner, M., Ballesteros, G., Palacio, M., Alcalde, O., Garcia-Bolao, I., Bertomeu Gonzalez, V., Otero-Ravina, F., Garcia Seara, J., Gonzalez Juanatey, J., Dayal, N., Maziarski, P., Gentil-Baron, P., Koc, M., Onrat, E., Dural, I. E., Yilmaz, K., Ozin, B., Tan Kurklu, S., Atmaca, Y., Canpolat, U., Tokgozoglu, L., Dolu, A. K., Demirtas, B., Sahin, D., Ozcan Celebi, O., Gagirci, G., Turk, U. O., Ari, H., Polat, N., Toprak, N., Sucu, M., Akin Serdar, O., Taha Alper, A., Kepez, A., Yuksel, Y., Uzunselvi, A., Yuksel, S., Sahin, M., Kayapinar, O., Ozcan, T., Kaya, H., Yilmaz, M. B., Kutlu, M., Demir, M., Gibbs, C., Kaminskiene, S., Bryce, M., Skinner, A., Belcher, G., Hunt, J., Stancombe, L., Holbrook, B., Peters, C., Tettersell, S., Senoo, K., Russell, K., Domingos, P., Hussain, S., Partridge, J., Haynes, R., Bahadur, S., Brown, R., Mcmahon, S., Lip, G., Mcdonald, J., Balachandran, K., Singh, R., Garg, S., Desai, H., Davies, K., Goddard, W., Galasko, G., Rahman, I., Chua, Y., Payne, O., Preston, S., Brennan, O., Pedley, L., Whiteside, C., Dickinson, C., Brown, J., Jones, K., Benham, L., Brady, R., Buchanan, L., Ashton, A., Crowther, H., Fairlamb, H., Thornthwaite, S., Relph, C., Mcskeane, A., Poultney, U., Kelsall, N., Rice, P., Wilson, T., Wrigley, M., Kaba, R., Patel, T., Young, E., Law, J., Runnett, C., Thomas, H., Mckie, H., Fuller, J., Pick, S., Sharp, A., Hunt, A., Thorpe, K., Hardman, C., Cusack, E., Adams, L., Hough, M., Keenan, S., Bowring, A., Watts, J., Zaman, J., Goffin, K., Nutt, H., Beerachee, Y., Featherstone, J., Mills, C., Pearson, J., Stephenson, L., Grant, S., Wilson, A., Hawksworth, C., Alam, I., Robinson, M., Ryan, S., Egdell, R., Gibson, E., Holland, M., Leonard, D., Mishra, B., Ahmad, S., Randall, H., Hill, J., Reid, L., George, M., Mckinley, S., Brockway, L., Milligan, W., Sobolewska, J., Muir, J., Tuckis, L., Winstanley, L., Jacob, P., Kaye, S., Morby, L., Jan, A., Sewell, T., Boos, C., Wadams, B., Cope, C., Jefferey, P., Andrews, N., Getty, A., Suttling, A., Turner, C., Hudson, K., Austin, R., Howe, S., Iqbal, R., Gandhi, N., Brophy, K., Mirza, P., Willard, E., Collins, S., Ndlovu, N., Subkovas, E., Karthikeyan, V., Waggett, L., Wood, A., Bolger, A., Stockport, J., Evans, L., Harman, E., Starling, J., Williams, L., Saul, V., Sinha, M., Bell, L., Tudgay, S., Kemp, S., Frost, L., Ingram, T., Loughlin, A., Adams, C., Adams, M., Hurford, F., Owen, C., Miller, C., Donaldson, D., Tivenan, H., Button, H., Nasser, A., Jhagra, O., Stidolph, B., Brown, C., Livingstone, C., Duffy, M., Madgwick, P., Roberts, P., Greenwood, E., Fletcher, L., Beveridge, M., Earles, S., Mckenzie, D., Beacock, D., Dayer, M., Seddon, M., Greenwell, D., Luxton, F., Venn, F., Mills, H., Rewbury, J., James, K., Roberts, K., Tonks, L., Felmeden, D., Taggu, W., Summerhayes, A., Hughes, D., Sutton, J., Felmeden, L., Khan, M., Walker, E., Norris, L., O'Donohoe, L., Mozid, A., Dymond, H., Lloyd-Jones, H., Saunders, G., Simmons, D., Coles, D., Cotterill, D., Beech, S., Kidd, S., Wrigley, B., Petkar, S., Smallwood, A., Jones, R., Radford, E., Milgate, S., Metherell, S., Cottam, V., Buckley, C., Broadley, A., Wood, D., Allison, J., Rennie, K., Balian, L., Howard, L., Pippard, L., Board, S., Pitt-Kerby, T., Proietti M, Vitolo M, Harrison SL, Lane DA, Fauchier L, Marin F, Nabauer M, Potpara TS, Dan GA, Boriani G, Lip GYH, ESC-EHRA EORP-AF Long-Term General Registry Investigators, Diemberger I, Ziacchi M, Frisoni J, Cardiology, ACS - Heart failure & arrhythmias, Graduate School, UCL - SSS/IREC/CARD - Pôle de recherche cardiovasculaire, UCL - SSS/IREC/MONT - Pôle Mont Godinne, and UCL - (MGD) Service de cardiologie
- Subjects
Registrie ,Research Report ,medicine.medical_specialty ,Major adverse outcome ,Cardiovascular risk factors ,Cluster analysis ,Risk Factors ,Internal medicine ,Clinical phenotype ,Atrial Fibrillation ,Epidemiology ,Humans ,Medicine ,Registries ,Cluster analysi ,Atrial fibrillation ,Clinical management ,Clinical phenotypes ,Major adverse outcomes ,Phenotype ,business.industry ,Proportional hazards model ,Risk Factor ,Hazard ratio ,General Medicine ,medicine.disease ,Confidence interval ,Cohort ,Observational study ,business ,Research Article ,Human - Abstract
Background Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients’ clinical phenotypes and analyse the differential clinical course. Methods We performed a hierarchical cluster analysis based on Ward’s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients’ prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P < .001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27–3.62; HR 3.42, 95%CI 2.72–4.31; HR 2.79, 95%CI 2.32–3.35), and Cluster 1 (HR 1.88, 95%CI 1.48–2.38; HR 2.50, 95%CI 1.98–3.15; HR 2.09, 95%CI 1.74–2.51) reported a higher risk for the three outcomes respectively. Conclusions In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes.
- Published
- 2021
- Full Text
- View/download PDF
44. Overview of 3D Printing Technology
- Author
-
Hussain S
- Subjects
General Engineering - Abstract
The pharmaceutical industry is advancing at an incredible rate. Novel drug formulations for targeted therapy have been developed all thanks to advances in modern sciences. Even so, the manufacturing sector of novel dosage forms is minimal, and the industry continues to rely on traditional drug delivery systems, particularly modified tablets. The use of 3D printing technologies in pharma companies has opened up new possibilities for printed products and device research and production. 3D Printing has slowly progressed from its original use as pre-surgical imaging templates and tooling molds to produce one-of-a-kind instruments, implants, tissue engineering scaffolds, testing platforms, and drug delivery systems. The most significant advantages of 3D printing technologies include the ability to produce small batches of drugs with custom dosages, forms, weights, and drug release profiles. The production of medicines in this manner could eventually contribute to the realization of the principle of personalized medicine. The biomedical industry and academia have also embraced 3D printing in recent years. It offers commercially available medical devices as well as a forum for cutting-edge studies in fields such as tissue and organ printing. This mini-review provides an overview of 3D printed technology in medicines.
- Published
- 2021
- Full Text
- View/download PDF
45. Modified State-Dependent Queuing Model for the Capacity Analysis of Metro Rail Transit Station Corridor during COVID-19
- Author
-
Afaq Khattak, Hamad Almujibah, Feng Chen, and Hussain S. Alyami
- Subjects
Renewable Energy, Sustainability and the Environment ,COVID-19 ,metro rail transit station ,queuing modeling ,Geography, Planning and Development ,Building and Construction ,Management, Monitoring, Policy and Law - Abstract
The COVID-19 pandemic policies have had a significant impact on the daily commuter flow at the metro rail transit stations. In this study, we propose a modified state-dependent M(n)/G(n)/C/C queuing model for the analysis of commuter flow in the corridor of metro rail transit stations in the COVID-19 situation in order to ensure safe social distance. The proposed model is a finite capacity queuing system with state-dependent commuter arrivals and state-dependent service rates based on the flow–density relationship. First, a mathematical queuing model is developed by using the birth–death process (BDP) and the expected number of commuters, and average area occupied per commuter and blocking probabilities are computed. Then, the accuracy of the proposed model is verified by a discrete-event simulation (DES) framework. (1) The proposed model’s results are compared to those of the existing M/G(n)/C/C model. The proposed modified model’s sensitivity analysis revealed that the anticipated number of commuters in the corridor remains smaller when the arrival rate is state-dependent. (2) In accordance with COVID-19 protocol, when the facility is congested, commuters are discouraged from entering and a safe social distance is maintained between them. (3) No commuters are impeded, and adequate throughput is ensured from the corridor. The proposed model will assist the metro rail transit station operators in making intelligent decisions regarding the operations in the COVID-19 situation.
- Published
- 2022
- Full Text
- View/download PDF
46. Covid-19 Vaccine Efficacy on Omicron Variant
- Author
-
Hussain S
- Subjects
General Engineering - Published
- 2022
- Full Text
- View/download PDF
47. Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
- Author
-
Bay, Daya, collaborations, JUNO, Abusleme, A., Adam, T., Ahmad, S., Aiello, S., Akram, M., Ali, N., An, F. P., An, G. P., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., de André, J. P. A. M., Babic, A., Balantekin, A. B., Baldini, W., Baldoncini, M., Band, H. R., Barresi, A., Baussan, E., Bellato, M., Bernieri, E., Biare, D., Birkenfeld, T., Bishai, M., Blin, S., Blum, D., Blyth, S., Bordereau, C., Brigatti, A., Brugnera, R., Budano, A., Burgbacher, P., Buscemi, M., Bussino, S., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y. K., Cai, Z. Y., Cammi, A., Campeny, A., Cao, C. Y., Cao, G. F., Cao, J., Caruso, R., Cerna, C., Chakaberia, I., Chang, J. F., Chang, Y., Chen, H. S., Chen, P. A., Chen, P. P., Chen, S. M., Chen, S. J., Chen, X. R., Chen, Y. W., Chen, Y. X., Chen, Y., Chen, Z., Cheng, J., Cheng, Y. P., Cheng, Z. K., Chepurnov, A., Cherwinka, J. J., Chiarello, F., Chiesa, D., Chimenti, P., Chu, M. C., Chukanov, A., Chuvashova, A., Clementi, ., Clerbaux, B., Di Lorenzo, S. Conforti, Corti, D., Costa, S., Corso, F. D., Cummings, J. P., Dalager, O., De La Taille, C., Deng, F. S., Deng, J. W., Deng, Z., Deng, Z. Y., Depnering, W., Diaz, M., Ding, X. F., Ding, Y. Y., Dirgantara, B., Dmitrievsky, S., Diwan, M. V., Dohnal, T., Donchenko, G., Dong, J. M., Dornic, D., Doroshkevich, E., Dove, J., Dracos, M., Druillole, F., Du, S. X., Dusini, S., Dvorak, M., Dwyer, D. A., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D. H., Fan, L., Fang, C., Fang, J., Fatkina, A., Fedoseev, D., Fekete, V., Feng, L. C., Feng, Q. C., Fiorentini, G., Ford, R., Formozov, A., Fournier, A., Franke, S., Gallo, J. P., Gan, H. N., Gao, F., Garfagnini, A., Göttel, A., Genster, C., Giammarchi, M., Giaz, A., Giudice, N., Giuliani, F., Gonchar, M., Gong, G. H., Gong, H., Gorchakov, O., Gornushkin, Y., Grassi, M., Grewing, C., Gromov, M., Gromov, V., Gu, M. H., Gu, W. Q., Gu, X. F., Gu, Y., Guan, M. Y., Guardone, N., Gul, M., Guo, C., Guo, J. Y., Guo, L., Guo, W. L., Guo, X. H., Guo, Y. H., Guo, Z., Haacke, M., Hackenburg, R. W., Hackspacher, P., Hagner, C., Han, R., Han, Y., Hans, S., He, M., He, W., Heeger, K. M., Heinz, T., Heng, Y. K., Herrera, R., Higuera, A., Hong, D. J., Hor, Y. K., Hou, S. J., Hsiung, Y. B., Hu, B. Z., Hu, H., Hu, J. R., Hu, J., Hu, S. Y., Hu, T., Hu, Z. J., Huang, C. H., Huang, G. H., Huang, H. X., Huang, Q. H., Huang, W. H., Huang, X. T., Huang, Y. B., Huber, P., Hui, J. Q., Huo, L., Huo, W. J., Huss, C., Hussain, S., Insolia, A., Ioannisian, A., Ioannisyan, D., Isocrate, R., Jaffe, D. E., Jen, K. L., Ji, X. L., Ji, X. P., Ji, X. Z., Jia, H. H., Jia, J. J., Jian, S. Y., Jiang, D., Jiang, X. S., Jin, R. Y., Jing, X. P., Johnson, R. A., Jollet, C., Jones, D., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karagounis, M., Kazarian, N., Kettell, S. H., Khan, A., Khan, W., Khosonthongkee, K., Kinz, P., Kohn, S., Korablev, D., Kouzakov, K., Kramer, M., Krasnoperov, A., Krokhaleva, S., Krumshteyn, Z., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachacinski, B., Lachenmaier, T., Langford, T. J., Lee, J., Lee, J. H. C., Lefevre, F., Lei, L., Lei, R., Leitner, R., Leung, J., Li, C., Li, D. M., Li, F., Li, H. T., Li, H. L., Li, J., Li, J. J., Li, J. Q., Li, K. J., Li, M. Z., Li, N., Li, Q. J., Li, R. H., Li, S. C., Li, S. F., Li, S. J., Li, T., Li, W. D., Li, W. G., Li, X. M., Li, X. N., Li, X. L., Li, X. Q., Li, Y., Li, Y. F., Li, Z. B., Li, Z. Y., Liang, H., Liang, J. J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, C. J., Lin, G. L., Lin, S. X., Lin, T., Lin, Y. H., Ling, J. J., Link, J. M., Lippi, I., Littenberg, L., Littlejohn, B. R., Liu, F., Liu, H., Liu, H. B., Liu, H. D., Liu, H. J., Liu, H. T., Liu, J. C., Liu, J. L., Liu, M., Liu, Q., Liu, R. X., Liu, S. Y., Liu, S. B., Liu, S. L., Liu, X. W., Liu, Y., Lokhov, A., Lombardi, P., Loo, K., Lorenz, S., Lu, C., Lu, H. Q., Lu, J. B., Lu, J. G., Lu, S. X., Lu, X. X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Luk, K. B., Luo, F. J., Luo, G., Luo, P. W., Luo, S., Luo, W. M., Lyashuk, V., Ma, Q. M., Ma, S., Ma, X. B., Ma, X. Y., Ma, Y. Q., Malyshkin, Y., Mantovani, F., Mao, Y. J., Mari, S. M., Marini, F., Marium, S., Marshall, C., Martellini, C., Martin-Chassard, G., Caicedo, D. A. Martinez, Martini, A., Martino, J., Mayilyan, D., McDonald, K. T., McKeown, R. D., Müller, A., Meng, G., Meng, Y., Meregaglia, A., Meroni, E., Meyhöfer, D., Mezzetto, M., Miller, J., Miramonti, L., Monforte, S., Montini, P., Montuschi, M., Morozov, N., Muralidharan, P., Napolitano, J., Nastasi, M., Naumov, D. V., Naumova, E., Nemchenok, I., Nikolaev, A., Ning, F. P., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Ortica, F., Pan, H. R., Paoloni, A., Park, J., Parkalian, N., Parmeggiano, S., Patton, S., Payupol, T., Pec, V., Pedretti, D., Pei, Y. T., Pelliccia, N., Peng, A. G., Peng, H. P., Peng, J. C., Perrot, F., Petitjean, P. A., Rico, L. F. Pineres, Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, S., Qian, X., Qian, X. H., Qiao, H., Qin, Z. H., Qiu, S. K., Rajput, M., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Reveco, C. M., Rezinko, T., Ricci, B., Robens, M., Roche, M., Rodphai, N., Rohwer, L., Romani, A., Rosero, R., Roskovec, B., Roth, C., Ruan, X. C., Ruan, X. D., Rujirawat, S., Rybnikov, A., Sadovsky, A., Saggese, P., Salamanna, G., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schuler, J., Schwab, C., Schweizer, K., Selivanov, D., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shahzad, M., Shi, G., Shi, J. Y., Shi, Y. J., Shutov, V., Sidorenkov, A., Simkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Sramek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Stefanik, D., Steiger, H., Steiner, H., Steinmann, J., Stender, M., Strati, V., Studenikin, A., Sun, G. X., Sun, L. T., Sun, J. L., Sun, S. F., Sun, X. L., Sun, Y. J., Sun, Y. Z., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Treskov, K., Troni, G., Trzaska, W., Tse, W. -H., Tull, C. E., Tuve, C., van Waasen, S., Boom, J. Vanden, Vassilopoulos, N., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Viren, B., Volpe, C., Vorobel, V., Votano, L., Walker, P., Wang, C., Wang, C. H., Wang, E., Wang, G. L., Wang, J., Wang, K. Y., Wang, L., Wang, M. F., Wang, M., Wang, N. Y., Wang, R. G., Wang, S. G., Wang, W., Wang, W. S., Wang, X., Wang, X. Y., Wang, Y., Wang, Y. F., Wang, Y. G., Wang, Y. M., Wang, Y. Q., Wang, Z., Wang, Z. M., Wang, Z. Y., Watcharangkool, A., Wei, H. Y., Wei, L. H., Wei, W., Wei, Y. D., Wen, L. J., Whisnant, K., White, C. G., Wiebusch, C., Wong, S. C. F., Wong, H. L. H., Wonsak, B., Worcester, E., Wu, C. H., Wu, D. R., Wu, F. L., Wu, Q., Wu, W. J., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y. F., Xia, D. M., Xie, Y. G., Xie, Z. Q., Xing, Z. Z., Xu, D. L., Xu, F. R., Xu, H. K., Xu, J. L., Xu, J., Xu, M. H., Xu, T., Xu, Y., Xue, T., Yan, B. J., Yan, X. B., Yan, Y. P., Yang, A. B., Yang, C. G., Yang, H., Yang, J., Yang, L., Yang, X. Y., Yang, Y. F., Yang, Y. Z., Yao, H. F., Yasin, Z., Ye, J. X., Ye, M., Yegin, U., Yeh, M., Yermia, F., Yi, P. H., You, Z. Y., Young, B. L., Yu, B. X., Yu, C. X., Yu, C. Y., Yu, H. Z., Yu, M., Yu, X. H., Yu, Z. Y., Yuan, C. Z., Yuan, Y., Yuan, Z. X., Yuan, Z. Y., Yue, B. B., Zafar, N., Zambanini, A., Zeng, P., Zeng, S., Zeng, T. X., Zeng, Y. D., Zhan, L., Zhang, C., Zhang, F. Y., Zhang, G. Q., Zhang, H. H., Zhang, H. Q., Zhang, J., Zhang, J. B., Zhang, J. W., Zhang, P., Zhang, Q. M., Zhang, T., Zhang, X. M., Zhang, X. T., Zhang, Y., Zhang, Y. H., Zhang, Y. M., Zhang, Y. P., Zhang, Y. X., Zhang, Y. Y., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, F. Y., Zhao, J., Zhao, R., Zhao, S. J., Zhao, T. C., Zheng, D. Q., Zheng, H., Zheng, M. S., Zheng, Y. H., Zhong, W. R., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, X., Zhu, J., Zhu, K. J., Zhuang, H. L., Zong, L., Zou, J. H., Abusleme A., Adam T., Ahmad S., Aiello S., Akram M., Ali N., An F.P., An G.P., An Q., Andronico G., Anfimov N., Antonelli V., Antoshkina T., Asavapibhop B., de Andre J.P.A.M., Babic A., Balantekin A.B., Baldini W., Baldoncini M., Band H.R., Barresi A., Baussan E., Bellato M., Bernieri E., Biare D., Birkenfeld T., Bishai M., Blin S., Blum D., Blyth S., Bordereau C., Brigatti A., Brugnera R., Budano A., Burgbacher P., Buscemi M., Bussino S., Busto J., Butorov I., Cabrera A., Cai H., Cai X., Cai Y.K., Cai Z.Y., Cammi A., Campeny A., Cao C.Y., Cao G.F., Cao J., Caruso R., Cerna C., Chang J.F., Chang Y., Chen H.S., Chen P.A., Chen P.P., Chen S.M., Chen S.J., Chen X.R., Chen Y.W., Chen Y.X., Chen Y., Chen Z., Cheng J., Cheng Y.P., Cheng Z.K., Chepurnov A., Cherwinka J.J., Chiarello F., Chiesa D., Chimenti P., Chu M.C., Chukanov A., Chuvashova A., Clementi C., Clerbaux B., Di Lorenzo S.C., Corti D., Costa S., Dal Corso F., Cummings J.P., Dalager O., De La Taille C., Deng F.S., Deng J.W., Deng Z., Deng Z.Y., Depnering W., Diaz M., Ding X.F., Ding Y.Y., Dirgantara B., Dmitrievsky S., Diwan M.V., Dohnal T., Donchenko G., Dong J.M., Dornic D., Doroshkevich E., Dove J., Dracos M., Druillole F., Du S.X., Dusini S., Dvorak M., Dwyer D.A., Enqvist T., Enzmann H., Fabbri A., Fajt L., Fan D.H., Fan L., Fang C., Fang J., Fatkina A., Fedoseev D., Fekete V., Feng L.C., Feng Q.C., Fiorentini G., Ford R., Formozov A., Fournier A., Franke S., Gallo J.P., Gan H.N., Gao F., Garfagnini A., Gottel A., Genster C., Giammarchi M., Giaz A., Giudice N., Giuliani F., Gonchar M., Gong G.H., Gong H., Gorchakov O., Gornushkin Y., Grassi M., Grewing C., Gromov M., Gromov V., Gu M.H., Gu W.Q., Gu X.F., Gu Y., Guan M.Y., Guardone N., Gul M., Guo C., Guo J.Y., Guo L., Guo W.L., Guo X.H., Guo Y.H., Guo Z., Haacke M., Hackenburg R.W., Hackspacher P., Hagner C., Han R., Han Y., Hans S., He M., He W., Heeger K.M., Heinz T., Heng Y.K., Herrera R., Higuera A., Hong D.J., Hor Y.K., Hou S.J., Hsiung Y.B., Hu B.Z., Hu H., Hu J.R., Hu J., Hu S.Y., Hu T., Hu Z.J., Huang C.H., Huang G.H., Huang H.X., Huang Q.H., Huang W.H., Huang X.T., Huang Y.B., Huber P., Hui J.Q., Huo L., Huo W.J., Huss C., Hussain S., Insolia A., Ioannisian A., Ioannisyan D., Isocrate R., Jaffe D.E., Jen K.L., Ji X.L., Ji X.P., Ji X.Z., Jia H.H., Jia J.J., Jian S.Y., Jiang D., Jiang X.S., Jin R.Y., Jing X.P., Johnson R.A., Jollet C., Jones D., Joutsenvaara J., Jungthawan S., Kalousis L., Kampmann P., Kang L., Karagounis M., Kazarian N., Kettell S.H., Khan A., Khan W., Khosonthongkee K., Kinz P., Kohn S., Korablev D., Kouzakov K., Kramer M., Krasnoperov A., Krokhaleva S., Krumshteyn Z., Kruth A., Kutovskiy N., Kuusiniemi P., Lachacinski B., Lachenmaier T., Landini C., Langford T.J., Lee J., Lee J.H.C., Lefevre F., Lei L., Lei R., Leitner R., Leung J., Li D.M., Li F., Li H.T., Li H.L., Li J., Li J.J., Li J.Q., Li K.J., Li M.Z., Li N., Li Q.J., Li R.H., Li S.C., Li S.F., Li S.J., Li T., Li W.D., Li W.G., Li X.M., Li X.N., Li X.L., Li X.Q., Li Y., Li Y.F., Li Z.B., Li Z.Y., Liang H., Liang J.J., Liebau D., Limphirat A., Limpijumnong S., Lin C.J., Lin G.L., Lin S.X., Lin T., Lin Y.H., Ling J.J., Link J.M., Lippi I., Littenberg L., Littlejohn B.R., Liu F., Liu H., Liu H.B., Liu H.D., Liu H.J., Liu H.T., Liu J.C., Liu J.L., Liu M., Liu Q., Liu R.X., Liu S.Y., Liu S.B., Liu S.L., Liu X.W., Liu Y., Lokhov A., Lombardi P., Loo K., Lorenz S., Lu C., Lu H.Q., Lu J.B., Lu J.G., Lu S.X., Lu X.X., Lubsandorzhiev B., Lubsandorzhiev S., Ludhova L., Luk K.B., Luo F.J., Luo G., Luo P.W., Luo S., Luo W.M., Lyashuk V., Ma Q.M., Ma S., Ma X.B., Ma X.Y., Ma Y.Q., Malyshkin Y., Mantovani F., Mao Y.J., Mari S.M., Marini F., Marium S., Marshall C., Martellini C., Martin-Chassard G., Caicedo D.A.M., Martini A., Martino J., Mayilyan D., McDonald K.T., McKeown R.D., Muller A., Meng G., Mednieks I., Meng Y., Meregaglia A., Meroni E., Meyhofer D., Mezzetto M., Miller J., Miramonti L., Monforte S., Montini P., Montuschi M., Morozov N., Muralidharan P., Napolitano J., Nastasi M., Naumov D.V., Naumova E., Nemchenok I., Nikolaev A., Ning F.P., Ning Z., Nunokawa H., Oberauer L., Ochoa-Ricoux J.P., Olshevskiy A., Ortica F., Pan H.R., Paoloni A., Park J., Parkalian N., Parmeggiano S., Patton S., Payupol T., Pec V., Pedretti D., Pei Y.T., Pelliccia N., Peng A.G., Peng H.P., Peng J.C., Perrot F., Petitjean P.A., Rico L.F.P., Popov A., Poussot P., Pratumwan W., Previtali E., Pun C.S.J., Qi F.Z., Qi M., Qian S., Qian X., Qian X.H., Qiao H., Qin Z.H., Qiu S.K., Rajput M., Ranucci G., Raper N., Re A., Rebber H., Rebii A., Ren B., Ren J., Reveco C.M., Rezinko T., Ricci B., Robens M., Roche M., Rodphai N., Rohwer L., Romani A., Rosero R., Roskovec B., Roth C., Ruan X.C., Ruan X.D., Rujirawat S., Rybnikov A., Sadovsky A., Saggese P., Salamanna G., Sangka A., Sanguansak N., Sawangwit U., Sawatzki J., Sawy F., Schever M., Schuler J., Schwab C., Schweizer K., Selivanov D., Selyunin A., Serafini A., Settanta G., Settimo M., Shahzad M., Shi G., Shi J.Y., Shi Y.J., Shutov V., Sidorenkov A., Simkovic F., Sirignano C., Siripak J., Sisti M., Slupecki M., Smirnov M., Smirnov O., Sogo-Bezerra T., Songwadhana J., Soonthornthum B., Sotnikov A., Sramek O., Sreethawong W., Stahl A., Stanco L., Stankevich K., Stefanik D., Steiger H., Steiner H., Steinmann J., Stender M., Strati V., Studenikin A., Sun G.X., Sun L.T., Sun J.L., Sun S.F., Sun X.L., Sun Y.J., Sun Y.Z., Suwonjandee N., Szelezniak M., Tang J., Tang Q., Tang X., Tietzsch A., Tkachev I., Tmej T., Treskov K., Troni G., Trzaska W., Tse W.-H., Tull C.E., Tuve C., van Waasen S., Boom J.V.D., Vassilopoulos N., Vedin V., Verde G., Vialkov M., Viaud B., Viren B., Volpe C., Vorobel V., Votano L., Walker P., Wang C., Wang C.H., Wang E., Wang G.L., Wang J., Wang K.Y., Wang L., Wang M.F., Wang M., Wang N.Y., Wang R.G., Wang S.G., Wang W., Wang W.S., Wang X., Wang X.Y., Wang Y., Wang Y.F., Wang Y.G., Wang Y.M., Wang Y.Q., Wang Z., Wang Z.M., Wang Z.Y., Watcharangkool A., Wei H.Y., Wei L.H., Wei W., Wei Y.D., Wen L.J., Whisnant K., White C.G., Wiebusch C., Wong S.C.F., Wong H.L.H., Wonsak B., Worcester E., Wu C.H., Wu D.R., Wu F.L., Wu Q., Wu W.J., Wu Z., Wurm M., Wurtz J., Wysotzki C., Xi Y.F., Xia D.M., Xie Y.G., Xie Z.Q., Xing Z.Z., Xu D.L., Xu F.R., Xu H.K., Xu J.L., Xu J., Xu M.H., Xu T., Xu Y., Xue T., Yan B.J., Yan X.B., Yan Y.P., Yang A.B., Yang C.G., Yang H., Yang J., Yang L., Yang X.Y., Yang Y.F., Yang Y.Z., Yao H.F., Yasin Z., Ye J.X., Ye M., Yegin U., Yeh M., Yermia F., Yi P.H., You Z.Y., Young B.L., Yu B.X., Yu C.X., Yu C.Y., Yu H.Z., Yu M., Yu X.H., Yu Z.Y., Yuan C.Z., Yuan Y., Yuan Z.X., Yuan Z.Y., Yue B.B., Zafar N., Zambanini A., Zeng P., Zeng S., Zeng T.X., Zeng Y.D., Zhan L., Zhang C., Zhang F.Y., Zhang G.Q., Zhang H.H., Zhang H.Q., Zhang J., Zhang J.B., Zhang J.W., Zhang P., Zhang Q.M., Zhang T., Zhang X.M., Zhang X.T., Zhang Y., Zhang Y.H., Zhang Y.M., Zhang Y.P., Zhang Y.X., Zhang Y.Y., Zhang Z.J., Zhang Z.P., Zhang Z.Y., Zhao F.Y., Zhao J., Zhao R., Zhao S.J., Zhao T.C., Zheng D.Q., Zheng H., Zheng M.S., Zheng Y.H., Zhong W.R., Zhou J., Zhou L., Zhou N., Zhou S., Zhou X., Zhu J., Zhu K.J., Zhuang H.L., Zong L., Zou J.H., Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), JUNO, Daya Bay, Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Abusleme, A, Adam, T, Ahmad, S, Aiello, S, Akram, M, Ali, N, An, F, An, G, An, Q, Andronico, G, Anfimov, N, Antonelli, V, Antoshkina, T, Asavapibhop, B, de Andre, J, Babic, A, Balantekin, A, Baldini, W, Baldoncini, M, Band, H, Barresi, A, Baussan, E, Bellato, M, Bernieri, E, Biare, D, Birkenfeld, T, Bishai, M, Blin, S, Blum, D, Blyth, S, Bordereau, C, Brigatti, A, Brugnera, R, Budano, A, Burgbacher, P, Buscemi, M, Bussino, S, Busto, J, Butorov, I, Cabrera, A, Cai, H, Cai, X, Cai, Y, Cai, Z, Cammi, A, Campeny, A, Cao, C, Cao, G, Cao, J, Caruso, R, Cerna, C, Chang, J, Chang, Y, Chen, H, Chen, P, Chen, S, Chen, X, Chen, Y, Chen, Z, Cheng, J, Cheng, Y, Cheng, Z, Chepurnov, A, Cherwinka, J, Chiarello, F, Chiesa, D, Chimenti, P, Chu, M, Chukanov, A, Chuvashova, A, Clementi, C, Clerbaux, B, Di Lorenzo, S, Corti, D, Costa, S, Dal Corso, F, Cummings, J, Dalager, O, De La Taille, C, Deng, F, Deng, J, Deng, Z, Depnering, W, Diaz, M, Ding, X, Ding, Y, Dirgantara, B, Dmitrievsky, S, Diwan, M, Dohnal, T, Donchenko, G, Dong, J, Dornic, D, Doroshkevich, E, Dove, J, Dracos, M, Druillole, F, Du, S, Dusini, S, Dvorak, M, Dwyer, D, Enqvist, T, Enzmann, H, Fabbri, A, Fajt, L, Fan, D, Fan, L, Fang, C, Fang, J, Fatkina, A, Fedoseev, D, Fekete, V, Feng, L, Feng, Q, Fiorentini, G, Ford, R, Formozov, A, Fournier, A, Franke, S, Gallo, J, Gan, H, Gao, F, Garfagnini, A, Gottel, A, Genster, C, Giammarchi, M, Giaz, A, Giudice, N, Giuliani, F, Gonchar, M, Gong, G, Gong, H, Gorchakov, O, Gornushkin, Y, Grassi, M, Grewing, C, Gromov, M, Gromov, V, Gu, M, Gu, W, Gu, X, Gu, Y, Guan, M, Guardone, N, Gul, M, Guo, C, Guo, J, Guo, L, Guo, W, Guo, X, Guo, Y, Guo, Z, Haacke, M, Hackenburg, R, Hackspacher, P, Hagner, C, Han, R, Han, Y, Hans, S, He, M, He, W, Heeger, K, Heinz, T, Heng, Y, Herrera, R, Higuera, A, Hong, D, Hor, Y, Hou, S, Hsiung, Y, Hu, B, Hu, H, Hu, J, Hu, S, Hu, T, Hu, Z, Huang, C, Huang, G, Huang, H, Huang, Q, Huang, W, Huang, X, Huang, Y, Huber, P, Hui, J, Huo, L, Huo, W, Huss, C, Hussain, S, Insolia, A, Ioannisian, A, Ioannisyan, D, Isocrate, R, Jaffe, D, Jen, K, Ji, X, Jia, H, Jia, J, Jian, S, Jiang, D, Jiang, X, Jin, R, Jing, X, Johnson, R, Jollet, C, Jones, D, Joutsenvaara, J, Jungthawan, S, Kalousis, L, Kampmann, P, Kang, L, Karagounis, M, Kazarian, N, Kettell, S, Khan, A, Khan, W, Khosonthongkee, K, Kinz, P, Kohn, S, Korablev, D, Kouzakov, K, Kramer, M, Krasnoperov, A, Krokhaleva, S, Krumshteyn, Z, Kruth, A, Kutovskiy, N, Kuusiniemi, P, Lachacinski, B, Lachenmaier, T, Landini, C, Langford, T, Lee, J, Lefevre, F, Lei, L, Lei, R, Leitner, R, Leung, J, Li, D, Li, F, Li, H, Li, J, Li, K, Li, M, Li, N, Li, Q, Li, R, Li, S, Li, T, Li, W, Li, X, Li, Y, Li, Z, Liang, H, Liang, J, Liebau, D, Limphirat, A, Limpijumnong, S, Lin, C, Lin, G, Lin, S, Lin, T, Lin, Y, Ling, J, Link, J, Lippi, I, Littenberg, L, Littlejohn, B, Liu, F, Liu, H, Liu, J, Liu, M, Liu, Q, Liu, R, Liu, S, Liu, X, Liu, Y, Lokhov, A, Lombardi, P, Loo, K, Lorenz, S, Lu, C, Lu, H, Lu, J, Lu, S, Lu, X, Lubsandorzhiev, B, Lubsandorzhiev, S, Ludhova, L, Luk, K, Luo, F, Luo, G, Luo, P, Luo, S, Luo, W, Lyashuk, V, Ma, Q, Ma, S, Ma, X, Ma, Y, Malyshkin, Y, Mantovani, F, Mao, Y, Mari, S, Marini, F, Marium, S, Marshall, C, Martellini, C, Martin-Chassard, G, Caicedo, D, Martini, A, Martino, J, Mayilyan, D, Mcdonald, K, Mckeown, R, Muller, A, Meng, G, Mednieks, I, Meng, Y, Meregaglia, A, Meroni, E, Meyhofer, D, Mezzetto, M, Miller, J, Miramonti, L, Monforte, S, Montini, P, Montuschi, M, Morozov, N, Muralidharan, P, Napolitano, J, Nastasi, M, Naumov, D, Naumova, E, Nemchenok, I, Nikolaev, A, Ning, F, Ning, Z, Nunokawa, H, Oberauer, L, Ochoa-Ricoux, J, Olshevskiy, A, Ortica, F, Pan, H, Paoloni, A, Park, J, Parkalian, N, Parmeggiano, S, Patton, S, Payupol, T, Pec, V, Pedretti, D, Pei, Y, Pelliccia, N, Peng, A, Peng, H, Peng, J, Perrot, F, Petitjean, P, Rico, L, Popov, A, Poussot, P, Pratumwan, W, Previtali, E, Pun, C, Qi, F, Qi, M, Qian, S, Qian, X, Qiao, H, Qin, Z, Qiu, S, Rajput, M, Ranucci, G, Raper, N, Re, A, Rebber, H, Rebii, A, Ren, B, Ren, J, Reveco, C, Rezinko, T, Ricci, B, Robens, M, Roche, M, Rodphai, N, Rohwer, L, Romani, A, Rosero, R, Roskovec, B, Roth, C, Ruan, X, Rujirawat, S, Rybnikov, A, Sadovsky, A, Saggese, P, Salamanna, G, Sangka, A, Sanguansak, N, Sawangwit, U, Sawatzki, J, Sawy, F, Schever, M, Schuler, J, Schwab, C, Schweizer, K, Selivanov, D, Selyunin, A, Serafini, A, Settanta, G, Settimo, M, Shahzad, M, Shi, G, Shi, J, Shi, Y, Shutov, V, Sidorenkov, A, Simkovic, F, Sirignano, C, Siripak, J, Sisti, M, Slupecki, M, Smirnov, M, Smirnov, O, Sogo-Bezerra, T, Songwadhana, J, Soonthornthum, B, Sotnikov, A, Sramek, O, Sreethawong, W, Stahl, A, Stanco, L, Stankevich, K, Stefanik, D, Steiger, H, Steiner, H, Steinmann, J, Stender, M, Strati, V, Studenikin, A, Sun, G, Sun, L, Sun, J, Sun, S, Sun, X, Sun, Y, Suwonjandee, N, Szelezniak, M, Tang, J, Tang, Q, Tang, X, Tietzsch, A, Tkachev, I, Tmej, T, Treskov, K, Troni, G, Trzaska, W, Tse, W, Tull, C, Tuve, C, van Waasen, S, Boom, J, Vassilopoulos, N, Vedin, V, Verde, G, Vialkov, M, Viaud, B, Viren, B, Volpe, C, Vorobel, V, Votano, L, Walker, P, Wang, C, Wang, E, Wang, G, Wang, J, Wang, K, Wang, L, Wang, M, Wang, N, Wang, R, Wang, S, Wang, W, Wang, X, Wang, Y, Wang, Z, Watcharangkool, A, Wei, H, Wei, L, Wei, W, Wei, Y, Wen, L, Whisnant, K, White, C, Wiebusch, C, Wong, S, Wong, H, Wonsak, B, Worcester, E, Wu, C, Wu, D, Wu, F, Wu, Q, Wu, W, Wu, Z, Wurm, M, Wurtz, J, Wysotzki, C, Xi, Y, Xia, D, Xie, Y, Xie, Z, Xing, Z, Xu, D, Xu, F, Xu, H, Xu, J, Xu, M, Xu, T, Xu, Y, Xue, T, Yan, B, Yan, X, Yan, Y, Yang, A, Yang, C, Yang, H, Yang, J, Yang, L, Yang, X, Yang, Y, Yao, H, Yasin, Z, Ye, J, Ye, M, Yegin, U, Yeh, M, Yermia, F, Yi, P, You, Z, Young, B, Yu, B, Yu, C, Yu, H, Yu, M, Yu, X, Yu, Z, Yuan, C, Yuan, Y, Yuan, Z, Yue, B, Zafar, N, Zambanini, A, Zeng, P, Zeng, S, Zeng, T, Zeng, Y, Zhan, L, Zhang, C, Zhang, F, Zhang, G, Zhang, H, Zhang, J, Zhang, P, Zhang, Q, Zhang, T, Zhang, X, Zhang, Y, Zhang, Z, Zhao, F, Zhao, J, Zhao, R, Zhao, S, Zhao, T, Zheng, D, Zheng, H, Zheng, M, Zheng, Y, Zhong, W, Zhou, J, Zhou, L, Zhou, N, Zhou, S, Zhou, X, Zhu, J, Zhu, K, Zhuang, H, Zong, L, Zou, J, Abusleme, A., Adam, T., Ahmad, S., Aiello, S., Akram, M., Ali, N., An, F. P., An, G. P., An, Q., Andronico, G., Anfimov, N., Antonelli, V., Antoshkina, T., Asavapibhop, B., de Andre, J. P. A. M., Babic, A., Balantekin, A. B., Baldini, W., Baldoncini, M., Band, H. R., Barresi, A., Baussan, E., Bellato, M., Bernieri, E., Biare, D., Birkenfeld, T., Bishai, M., Blin, S., Blum, D., Blyth, S., Bordereau, C., Brigatti, A., Brugnera, R., Budano, A., Burgbacher, P., Buscemi, M., Bussino, S., Busto, J., Butorov, I., Cabrera, A., Cai, H., Cai, X., Cai, Y. K., Cai, Z. Y., Cammi, A., Campeny, A., Cao, C. Y., Cao, G. F., Cao, J., Caruso, R., Cerna, C., Chang, J. F., Chang, Y., Chen, H. S., Chen, P. A., Chen, P. P., Chen, S. M., Chen, S. J., Chen, X. R., Chen, Y. W., Chen, Y. X., Chen, Y., Chen, Z., Cheng, J., Cheng, Y. P., Cheng, Z. K., Chepurnov, A., Cherwinka, J. J., Chiarello, F., Chiesa, D., Chimenti, P., Chu, M. C., Chukanov, A., Chuvashova, A., Clementi, C., Clerbaux, B., Di Lorenzo, S. C., Corti, D., Costa, S., Dal Corso, F., Cummings, J. P., Dalager, O., De La Taille, C., Deng, F. S., Deng, J. W., Deng, Z., Deng, Z. Y., Depnering, W., Diaz, M., Ding, X. F., Ding, Y. Y., Dirgantara, B., Dmitrievsky, S., Diwan, M. V., Dohnal, T., Donchenko, G., Dong, J. M., Dornic, D., Doroshkevich, E., Dove, J., Dracos, M., Druillole, F., Du, S. X., Dusini, S., Dvorak, M., Dwyer, D. A., Enqvist, T., Enzmann, H., Fabbri, A., Fajt, L., Fan, D. H., Fan, L., Fang, C., Fang, J., Fatkina, A., Fedoseev, D., Fekete, V., Feng, L. C., Feng, Q. C., Fiorentini, G., Ford, R., Formozov, A., Fournier, A., Franke, S., Gallo, J. P., Gan, H. N., Gao, F., Garfagnini, A., Gottel, A., Genster, C., Giammarchi, M., Giaz, A., Giudice, N., Giuliani, F., Gonchar, M., Gong, G. H., Gong, H., Gorchakov, O., Gornushkin, Y., Grassi, M., Grewing, C., Gromov, M., Gromov, V., Gu, M. H., Gu, W. Q., Gu, X. F., Gu, Y., Guan, M. Y., Guardone, N., Gul, M., Guo, C., Guo, J. Y., Guo, L., Guo, W. L., Guo, X. H., Guo, Y. H., Guo, Z., Haacke, M., Hackenburg, R. W., Hackspacher, P., Hagner, C., Han, R., Han, Y., Hans, S., He, M., He, W., Heeger, K. M., Heinz, T., Heng, Y. K., Herrera, R., Higuera, A., Hong, D. J., Hor, Y. K., Hou, S. J., Hsiung, Y. B., Hu, B. Z., Hu, H., Hu, J. R., Hu, J., Hu, S. Y., Hu, T., Hu, Z. J., Huang, C. H., Huang, G. H., Huang, H. X., Huang, Q. H., Huang, W. H., Huang, X. T., Huang, Y. B., Huber, P., Hui, J. Q., Huo, L., Huo, W. J., Huss, C., Hussain, S., Insolia, A., Ioannisian, A., Ioannisyan, D., Isocrate, R., Jaffe, D. E., Jen, K. L., Ji, X. L., Ji, X. P., Ji, X. Z., Jia, H. H., Jia, J. J., Jian, S. Y., Jiang, D., Jiang, X. S., Jin, R. Y., Jing, X. P., Johnson, R. A., Jollet, C., Jones, D., Joutsenvaara, J., Jungthawan, S., Kalousis, L., Kampmann, P., Kang, L., Karagounis, M., Kazarian, N., Kettell, S. H., Khan, A., Khan, W., Khosonthongkee, K., Kinz, P., Kohn, S., Korablev, D., Kouzakov, K., Kramer, M., Krasnoperov, A., Krokhaleva, S., Krumshteyn, Z., Kruth, A., Kutovskiy, N., Kuusiniemi, P., Lachacinski, B., Lachenmaier, T., Landini, C., Langford, T. J., Lee, J., Lee, J. H. C., Lefevre, F., Lei, L., Lei, R., Leitner, R., Leung, J., Li, D. M., Li, F., Li, H. T., Li, H. L., Li, J., Li, J. J., Li, J. Q., Li, K. J., Li, M. Z., Li, N., Li, Q. J., Li, R. H., Li, S. C., Li, S. F., Li, S. J., Li, T., Li, W. D., Li, W. G., Li, X. M., Li, X. N., Li, X. L., Li, X. Q., Li, Y., Li, Y. F., Li, Z. B., Li, Z. Y., Liang, H., Liang, J. J., Liebau, D., Limphirat, A., Limpijumnong, S., Lin, C. J., Lin, G. L., Lin, S. X., Lin, T., Lin, Y. H., Ling, J. J., Link, J. M., Lippi, I., Littenberg, L., Littlejohn, B. R., Liu, F., Liu, H., Liu, H. B., Liu, H. D., Liu, H. J., Liu, H. T., Liu, J. C., Liu, J. L., Liu, M., Liu, Q., Liu, R. X., Liu, S. Y., Liu, S. B., Liu, S. L., Liu, X. W., Liu, Y., Lokhov, A., Lombardi, P., Loo, K., Lorenz, S., Lu, C., Lu, H. Q., Lu, J. B., Lu, J. G., Lu, S. X., Lu, X. X., Lubsandorzhiev, B., Lubsandorzhiev, S., Ludhova, L., Luk, K. B., Luo, F. J., Luo, G., Luo, P. W., Luo, S., Luo, W. M., Lyashuk, V., Ma, Q. M., Ma, S., Ma, X. B., Ma, X. Y., Ma, Y. Q., Malyshkin, Y., Mantovani, F., Mao, Y. J., Mari, S. M., Marini, F., Marium, S., Marshall, C., Martellini, C., Martin-Chassard, G., Caicedo, D. A. M., Martini, A., Martino, J., Mayilyan, D., Mcdonald, K. T., Mckeown, R. D., Muller, A., Meng, G., Mednieks, I., Meng, Y., Meregaglia, A., Meroni, E., Meyhofer, D., Mezzetto, M., Miller, J., Miramonti, L., Monforte, S., Montini, P., Montuschi, M., Morozov, N., Muralidharan, P., Napolitano, J., Nastasi, M., Naumov, D. V., Naumova, E., Nemchenok, I., Nikolaev, A., Ning, F. P., Ning, Z., Nunokawa, H., Oberauer, L., Ochoa-Ricoux, J. P., Olshevskiy, A., Ortica, F., Pan, H. R., Paoloni, A., Park, J., Parkalian, N., Parmeggiano, S., Patton, S., Payupol, T., Pec, V., Pedretti, D., Pei, Y. T., Pelliccia, N., Peng, A. G., Peng, H. P., Peng, J. C., Perrot, F., Petitjean, P. A., Rico, L. F. P., Popov, A., Poussot, P., Pratumwan, W., Previtali, E., Pun, C. S. J., Qi, F. Z., Qi, M., Qian, S., Qian, X., Qian, X. H., Qiao, H., Qin, Z. H., Qiu, S. K., Rajput, M., Ranucci, G., Raper, N., Re, A., Rebber, H., Rebii, A., Ren, B., Ren, J., Reveco, C. M., Rezinko, T., Ricci, B., Robens, M., Roche, M., Rodphai, N., Rohwer, L., Romani, A., Rosero, R., Roskovec, B., Roth, C., Ruan, X. C., Ruan, X. D., Rujirawat, S., Rybnikov, A., Sadovsky, A., Saggese, P., Salamanna, G., Sangka, A., Sanguansak, N., Sawangwit, U., Sawatzki, J., Sawy, F., Schever, M., Schuler, J., Schwab, C., Schweizer, K., Selivanov, D., Selyunin, A., Serafini, A., Settanta, G., Settimo, M., Shahzad, M., Shi, G., Shi, J. Y., Shi, Y. J., Shutov, V., Sidorenkov, A., Simkovic, F., Sirignano, C., Siripak, J., Sisti, M., Slupecki, M., Smirnov, M., Smirnov, O., Sogo-Bezerra, T., Songwadhana, J., Soonthornthum, B., Sotnikov, A., Sramek, O., Sreethawong, W., Stahl, A., Stanco, L., Stankevich, K., Stefanik, D., Steiger, H., Steiner, H., Steinmann, J., Stender, M., Strati, V., Studenikin, A., Sun, G. X., Sun, L. T., Sun, J. L., Sun, S. F., Sun, X. L., Sun, Y. J., Sun, Y. Z., Suwonjandee, N., Szelezniak, M., Tang, J., Tang, Q., Tang, X., Tietzsch, A., Tkachev, I., Tmej, T., Treskov, K., Troni, G., Trzaska, W., Tse, W. -H., Tull, C. E., Tuve, C., van Waasen, S., Boom, J. V. D., Vassilopoulos, N., Vedin, V., Verde, G., Vialkov, M., Viaud, B., Viren, B., Volpe, C., Vorobel, V., Votano, L., Walker, P., Wang, C., Wang, C. H., Wang, E., Wang, G. L., Wang, J., Wang, K. Y., Wang, L., Wang, M. F., Wang, M., Wang, N. Y., Wang, R. G., Wang, S. G., Wang, W., Wang, W. S., Wang, X., Wang, X. Y., Wang, Y., Wang, Y. F., Wang, Y. G., Wang, Y. M., Wang, Y. Q., Wang, Z., Wang, Z. M., Wang, Z. Y., Watcharangkool, A., Wei, H. Y., Wei, L. H., Wei, W., Wei, Y. D., Wen, L. J., Whisnant, K., White, C. G., Wiebusch, C., Wong, S. C. F., Wong, H. L. H., Wonsak, B., Worcester, E., Wu, C. H., Wu, D. R., Wu, F. L., Wu, Q., Wu, W. J., Wu, Z., Wurm, M., Wurtz, J., Wysotzki, C., Xi, Y. F., Xia, D. M., Xie, Y. G., Xie, Z. Q., Xing, Z. Z., Xu, D. L., Xu, F. R., Xu, H. K., Xu, J. L., Xu, J., Xu, M. H., Xu, T., Xu, Y., Xue, T., Yan, B. J., Yan, X. B., Yan, Y. P., Yang, A. B., Yang, C. G., Yang, H., Yang, J., Yang, L., Yang, X. Y., Yang, Y. F., Yang, Y. Z., Yao, H. F., Yasin, Z., Ye, J. X., Ye, M., Yegin, U., Yeh, M., Yermia, F., Yi, P. H., You, Z. Y., Young, B. L., Yu, B. X., Yu, C. X., Yu, C. Y., Yu, H. Z., Yu, M., Yu, X. H., Yu, Z. Y., Yuan, C. Z., Yuan, Y., Yuan, Z. X., Yuan, Z. Y., Yue, B. B., Zafar, N., Zambanini, A., Zeng, P., Zeng, S., Zeng, T. X., Zeng, Y. D., Zhan, L., Zhang, C., Zhang, F. Y., Zhang, G. Q., Zhang, H. H., Zhang, H. Q., Zhang, J., Zhang, J. B., Zhang, J. W., Zhang, P., Zhang, Q. M., Zhang, T., Zhang, X. M., Zhang, X. T., Zhang, Y., Zhang, Y. H., Zhang, Y. M., Zhang, Y. P., Zhang, Y. X., Zhang, Y. Y., Zhang, Z. J., Zhang, Z. P., Zhang, Z. Y., Zhao, F. Y., Zhao, J., Zhao, R., Zhao, S. J., Zhao, T. C., Zheng, D. Q., Zheng, H., Zheng, M. S., Zheng, Y. H., Zhong, W. R., Zhou, J., Zhou, L., Zhou, N., Zhou, S., Zhou, X., Zhu, J., Zhu, K. J., Zhuang, H. L., Zong, L., and Zou, J. H.
- Subjects
organic compounds: admixture ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Liquid scintillator ,scintillation counter: liquid ,Analytical chemistry ,FOS: Physical sciences ,model: optical ,Scintillator ,Wavelength shifter ,antineutrino: detector ,01 natural sciences ,NO ,High Energy Physics - Experiment ,wavelength shifter ,High Energy Physics - Experiment (hep-ex) ,PE2_2 ,Daya Bay ,Neutrino ,0103 physical sciences ,fluorine: admixture ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,ddc:530 ,neutrino oscillation ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation ,Jiangmen Underground Neutrino Observatory ,Physics ,JUNO ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,Detector ,Light yield ,Instrumentation and Detectors (physics.ins-det) ,Yield (chemistry) ,Scintillation counter ,Composition (visual arts) ,photon: yield - Abstract
To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and, 13 pages, 8 figures
- Published
- 2021
- Full Text
- View/download PDF
48. Finding the Path to Nosocomial COVID-19
- Author
-
Vatson, J. S., Thomas Nahass, Weber, A., Regunathan, A., and Hussain, S.
- Published
- 2021
- Full Text
- View/download PDF
49. LABORATORY TURN AROUND TIME FOR BIOCHEMISTRY INVESTIGATIONS IN EMERGENCY DEPARTMENT OF A TERTIARY CARE HOSPITAL OF NORTH INDIA
- Author
-
Zaffar N. , Rashid H. and Hussain S. and Hakeem A
- Subjects
TAT:Turnaround Time Pre-Analytical Analytical Post-Analytical Phases - Abstract
Background:Laboratory turnaround time is considered one of the most important indicators of work efficiency in hospitals, physicians always need timely results to take effective clinical decisions especially in the emergency department where these results can guide physicians whether to admit patients to the hospital, discharge them home or do further investigations. Objectives:1. Calculate the turnaround time for the various biochemical investigations from accident and emergency of a tertiary care institute.2. To find the percentage contribution of pre-analytical, analytical and post analytical phases to TAT. Materials And Methods:This was a prospective, descriptive, single-center study of therapeutic TAT for biochemistry investigations in accident and emergency ofa tertiary care hospital. The study was conducted for a period of 3 months from August 2020 to Oct 2020. During the present study period, all biochemistry investigations ordered from emergency department were studied. The Lundberg definition of TAT was used in this study. This means that the pre-analytical TAT used was from the point of order of tests to the receipt of samples at the laboratory. Similarly, the post-analytic phase started from the time results were available at the laboratory to the point where clinicians could access it for action. Results:The turnaround time (TAT) has been monitored in total of 7515 samples for biochemistry evaluation with mean TAT of169.6 min. It was noted that the mean pre analytical time period was 120.6 min , Analytical time period 34 min while post analytical time periodwas 15 min. In our study of the pre-analytical phase 37.7%, 39.3%, and 22.9% tests were completed within 60, 60-120 and above 120 minutes, respectively. With respect to the analytical phase, 80.4% and 19.6% tests were completed below 45 minutes and above 45 minutes, respectively. Conclusion:Despite efficient analysis of results, the preanalytic period contributed the most delay in TAT. Collecting the blood samples under standard conditions, filling the test request slips, marking the samples with bar-codes contributed to long TAT.  
- Published
- 2021
- Full Text
- View/download PDF
50. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
- Author
-
Klionsky, DJ, Abdel-Aziz, AK, Abdelfatah, S, Abdellatif, M, Abdoli, A, Abel, S, Abeliovich, H, Abildgaard, MH, Abudu, YP, Acevedo-Arozena, A, Adamopoulos, IE, Adeli, K, Adolph, TE, Adornetto, A, Aflaki, E, Agam, G, Agarwal, A, Aggarwal, BB, Agnello, M, Agostinis, P, Agrewala, JN, Agrotis, A, Aguilar, PV, Ahmad, ST, Ahmed, ZM, Ahumada-Castro, U, Aits, S, Aizawa, S, Akkoc, Y, Akoumianaki, T, Akpinar, HA, Al-Abd, AM, Al-Akra, L, Al-Gharaibeh, A, Alaoui-Jamali, MA, Alberti, S, Alcocer-Gomez, E, Alessandri, C, Ali, M, Al-Bari, MAA, Aliwaini, S, Alizadeh, J, Almacellas, E, Almasan, A, Alonso, A, Alonso, GD, Altan-Bonnet, N, Altieri, DC, Alves, S, da Costa, CA, Alzaharna, MM, Amadio, M, Amantini, C, Amaral, C, Ambrosio, S, Amer, AO, Ammanathan, V, An, ZY, Andersen, SU, Andrabi, SA, Andrade-Silva, M, Andres, AM, Angelini, S, Ann, D, Anozie, UC, Ansari, MY, Antas, P, Antebi, A, Anton, Z, Anwar, T, Apetoh, L, Apostolova, N, Araki, T, Araki, Y, Arasaki, K, Araujo, WL, Araya, J, Arden, C, Arevalo, MA, Arguelles, S, Arias, E, Arikkath, J, Arimoto, H, Ariosa, AR, Armstrong-James, D, Arnaune-Pelloquin, L, Aroca, A, Arroyo, DS, Arsov, I, Artero, R, Asaro, DML, Aschner, M, Ashrafizadeh, M, Ashur-Fabian, O, Atanasov, AG, Au, AK, Auberger, P, Auner, HW, Aurelian, L, Autelli, R, Avagliano, L, Avalos, Y, Aveic, S, Aveleira, CA, AvinWittenberg, T, Aydin, Y, Ayton, S, Ayyadevara, S, Azzopardi, M, Baba, M, Backer, JM, Backues, SK, Bae, DH, Bae, ON, Bae, SH, Baehrecke, EH, Baek, A, Baek, SH, Bagetta, G, Bagniewska-Zadworna, A, Bai, H, Bai, J, Bai, XY, Bai, YD, Bairagi, N, Baksi, S, Balbi, T, Baldari, CT, Balduini, W, Ballabio, A, Ballester, M, Balazadeh, S, Balzan, R, Bandopadhyay, R, Banerjee, S, Bao, Y, Baptista, MS, Baracca, A, Barbati, C, Bargiela, A, Barila, D, Barlow, PG, Barmada, SJ, Barreiro, E, Barreto, GE, Bartek, J, Bartel, B, Bartolome, A, Barve, GR, Basagoudanavar, SH, Bassham, DC, Jr, RCB, Basu, A, Batoko, H, Batten, I, Baulieu, EE, Baumgarner, BL, Bayry, J, Beale, R, Beau, I, Beaumatin, F, Bechara, LRG, Beck, GR, Beers, MF, Begun, J, Behrends, C, Behrens, GMN, Bei, R, Bejarano, E, Bel, S, Behl, C, Belaid, A, Belgareh-Touze, N, Bellarosa, C, Belleudi, F, Perez, MB, Bello-Morales, R, Beltran, JSD, Beltran, S, Benbrook, DM, Bendorius, M, Benitez, BA, Benito-Cuesta, I, Bensalem, J, Berchtold, MW, Berezowska, S, Bergamaschi, D, Bergami, M, Bergmann, A, Berliocchi, L, Berlioz-Torrent, C, Bernard, A, Berthoux, L, Besirli, CG, Besteiro, S, Betin, VM, Beyaert, R, Bezbradica, JS, Bhaskar, K, Bhatia-Kissova, I, Bhattacharya, R, Bhattacharya, S, Bhattacharyya, S, Bhuiyan, MS, Bhutia, SK, Bi, LR, Bi, XL, Biden, TJ, Bijian, K, Billes, VA, Binart, N, Bincoletto, C, Birgisdottir, AB, Bjorkoy, G, Blanco, G, Blas-Garcia, A, Blasiak, J, Blomgran, R, Blomgren, K, Blum, JS, Boada-Romero, E, Boban, M, BoeszeBattaglia, K, Boeuf, P, Boland, B, Bomont, P, Bonaldo, P, Bonam, SR, Bonfili, L, Bonifacino, JS, Boone, BA, Bootman, MD, Bordi, M, Borner, C, Bornhauser, BC, Borthakur, G, Bosch, J, Bose, S, Botana, LM, Botas, J, Boulanger, CM, Boulton, ME, Bourdenx, M, Bourgeois, B, Bourke, NM, Bousquet, G, Boya, P, Bozhkov, PV, Bozi, LHM, Bozkurt, TO, Brackney, DE, Brandts, CH, Braun, RJ, Braus, GH, Bravo-Sagua, R, Bravo-San Pedro, JM, Brest, P, Bringer, MA, Briones-Herrera, A, Broaddus, VC, Brodersen, P, Alvarez, EMC, Brodsky, JL, Brody, SL, Bronson, PG, Bronstein, JM, Brown, CN, Brown, RE, Brum, PC, Brumell, JH, Brunetti-Pierri, N, Bruno, D, Bryson-Richardson, RJ, Bucci, C, Buchrieser, C, Bueno, M, Buitrago-Molina, LE, Buraschi, S, Buch, S, Buchan, JR, Buckingham, EM, Budak, H, Budini, M, Bultynck, G, Burada, F, Burgoyne, JR, Buron, MI, Bustos, V, Buttner, S, Butturini, E, Byrd, A, Cabas, I, Cabrera-Benitez, S, Cadwell, K, Cai, JJ, Cai, L, Cai, Q, Cairo, M, Calbet, JA, Caldwell, GA, Caldwell, KA, Call, JA, Calvani, R, Calvo, AC, Barrera, MCR, Camara, NO, Camonis, JH, Camougrand, N, Campanella, M, Campbell, EM, Campbell-Valois, FX, Campello, S, Campesi, I, Campos, JC, Camuzard, O, Cancino, J, de Almeida, DC, Canesi, L, Caniggia, I, Canonico, B, Canti, C, Cao, B, Caraglia, M, Carames, B, Carchman, EH, Cardenal-Munoz, E, Cardenas, C, Cardenas, L, Cardoso, SM, Carew, JS, Carle, GF, Carleton, G, Carloni, S, Carmona-Gutierrez, D, Carneiro, LA, Carnevali, O, Carosi, JM, Carra, S, Carrier, A, Carrier, L, Carroll, B, Carter, AB, Carvalho, AN, Casanova, M, Casas, C, Casas, J, Cassioli, C, Castillo, EF, Castillo, K, Castillo-Lluva, S, Castoldi, F, Castori, M, Castro, AF, Castro-Caldas, M, Castro-Hernandez, J, Castro-Obregon, S, Catz, SD, Cavadas, C, Cavaliere, F, Cavallini, G, Cavinato, M, Cayuela, ML, Rica, PC, Cecarini, V, Cecconi, F, Cechowska-Pasko, M, Cenci, S, Ceperuelo-Mallafre, V, Cerqueira, JJ, Cerutti, JM, Cervia, D, Cetintas, VB, Cetrullo, S, Chae, HJ, Chagin, AS, Chai, CY, Chakrabarti, G, Chakrabarti, O, Chakraborty, T, Chami, M, Chamilos, G, Chan, DW, Chan, EYW, Chan, ED, Chan, HYE, Chan, HH, Chan, H, Chan, MTV, Chan, YS, Chandra, PK, Chang, CP, Chang, CM, Chang, HC, Chang, K, Chao, J, Chapman, T, Charlet-Berguerand, N, Chatterjee, S, Chaube, SK, Chaudhary, A, Chauhan, S, Chaum, E, Checler, F, Cheetham, ME, Chen, CS, Chen, GC, Chen, JF, Chen, LL, Chen, L, Chen, ML, Chen, MK, Chen, N, Chen, Q, Chen, RH, Chen, S, Chen, W, Chen, WQ, Chen, XM, Chen, XW, Chen, X, Chen, Y, Chen, YG, Chen, YY, Chen, YQ, Chen, YJ, Chen, ZS, Chen, Z, Chen, ZH, Chen, ZJ, Chen, ZX, Cheng, HH, Cheng, J, Cheng, SY, Cheng, W, Cheng, XD, Cheng, XT, Cheng, YY, Cheng, ZY, Cheong, H, Cheong, JK, Chernyak, BV, Cherry, S, Cheung, CFR, Cheung, CHA, Cheung, KH, Chevet, E, Chi, RJ, Chiang, AKS, Chiaradonna, F, Chiarelli, R, Chiariello, M, Chica, N, Chiocca, S, Chiong, M, Chiou, SH, Chiramel, AI, Chiurchiu, V, Cho, DH, Choe, SK, Choi, AMK, Choi, ME, Choudhury, KR, Chow, NS, Chu, CT, Chua, JP, Chua, JJE, Chung, H, Chung, KP, Chung, S, Chung, SH, Chung, YL, Cianfanelli, V, Ciechomska, IA, Cifuentes, M, Cinque, L, Cirak, S, Cirone, M, Clague, MJ, Clarke, R, Clementi, E, Coccia, EM, Codogno, P, Cohen, E, Cohen, MM, Colasanti, T, Colasuonno, F, Colbert, RA, Colell, A, Coll, NS, Collins, MO, Colombo, MI, Colon-Ramos, DA, Combaret, L, Comincini, S, Cominetti, MR, Consiglio, A, Conte, A, Conti, F, Contu, VR, Cookson, MR, Coombs, KM, Coppens, I, Corasaniti, MT, Corkery, DP, Cordes, N, Cortese, K, Costa, MD, Costantino, S, Costelli, P, Coto-Montes, A, Crack, PJ, Crespo, JL, Criollo, A, Crippa, V, Cristofani, R, Csizmadia, T, Cuadrado, A, Cui, B, Cui, J, Cui, YX, Cui, Y, Culetto, E, Cumino, AC, Cybulsky, AV, Czaja, MJ, Czuczwar, SJ, D'Adamo, S, D'Amelio, M, D'Arcangelo, D, D'Lugos, AC, D'Orazi, G, da Silva, JA, Dafsari, HS, Dagda, RK, Dagdas, Y, Daglia, M, Dai, X, Dai, Y, Dai, YY, Dal Col, J, Dalhaimer, P, Dalla Valle, L, Dallenga, T, Dalmasso, G, Damme, M, Dando, I, Dantuma, NP, Darling, AL, Das, H, Dasarathy, S, Dasari, SK, Dash, S, Daumke, O, Dauphinee, AN, Davies, JS, Davila, VA, Davis, RJ, Davis, T, Naidu, SD, De Amicis, F, De Bosscher, K, De Felice, F, De Franceschi, L, De Leonibus, C, Barbosa, MGD, De Meyer, GRY, De Milito, A, De Nunzio, C, De Palma, C, De Santi, M, De Virgilio, C, De Zio, D, Debnath, J, DeBosch, BJ, Decuypere, J, Deehan, MA, Deflorian, G, DeGregori, J, Dehay, B, Del Rio, G, Delaney, JR, Delbridge, LMD, Delorme-Axford, E, Delpino, MV, Demarchi, F, Dembitz, V, Demers, ND, Deng, HB, Deng, ZQ, Dengjel, J, Dent, P, Denton, D, DePamphilis, ML, Der, CJ, Deretic, V, Descoteaux, A, Devis, L, Devkota, S, Devuyst, O, Dewson, G, Dharmasivam, M, Dhiman, R, di Bernardo, D, Di Cristina, M, Di Domenico, F, Di Fazio, P, Di Fonzo, A, Di Guardo, G, Di Guglielmo, GM, Di Leo, L, Di Malta, C, Di Nardo, A, Di Rienzo, M, Di Sano, F, Diallinas, G, Diao, JJ, Diaz-Araya, G, Diaz-Laviada, I, Dickinson, JM, Diederich, M, Dieude, M, Dikic, I, Ding, SP, Ding, WX, Dini, L, Dinic, M, Dinkova-Kostova, AT, Dionne, MS, Distler, JHW, Diwan, A, Dixon, IMC, Djavaheri-Mergny, M, Dobrinski, I, Dobrovinskaya, O, Dobrowolski, R, Dobson, RCJ, Emre, SD, Donadelli, M, Dong, B, Dong, XN, Dong, ZW, Ii, GWD, Dotsch, V, Dou, H, Dou, J, Dowaidar, M, Dridi, S, Drucker, L, Du, AL, Du, CG, Du, GW, Du, HN, Du, LL, du Toit, A, Duan, SB, Duan, XQ, Duarte, SP, Dubrovska, A, Dunlop, EA, Dupont, N, Duran, RV, Dwarakanath, BS, Dyshlovoy, SA, Ebrahimi-Fakhari, D, Eckhart, L, Edelstein, CL, Efferth, T, Eftekharpour, E, Eichinger, L, Eid, N, Eisenberg, T, Eissa, NT, Eissa, S, Ejarque, M, El Andaloussi, A, El-Hage, N, El-Naggar, S, Eleuteri, AM, El-Shafey, ES, Elgendy, M, Eliopoulos, AG, Elizalde, MM, Elks, PM, Elsasser, HP, Elsherbiny, ES, Emerling, BM, Emre, NCT, Eng, CH, Engedal, N, Engelbrecht, AM, Engelsen, AST, Enserink, JM, Escalante, R, Esclatine, A, Escobar-Henriques, M, Eskelinen, EL, Espert, L, Eusebio, MO, Fabrias, G, Fabrizi, C, Facchiano, A, Facchiano, F, Fadeel, B, Fader, C, Faesen, AC, Fairlie, WD, Falco, A, Falkenburger, BH, Fan, DP, Fan, J, Fan, YB, Fang, EF, Fang, YS, Fang, YQ, Fanto, M, Farfel-Becker, T, Faure, M, Fazeli, G, Fedele, AO, Feldman, AM, Feng, D, Feng, JC, Feng, LF, Feng, YB, Feng, YC, Feng, W, Araujo, TF, Ferguson, TA, Fernandez-Checa, JC, FernandezVeledo, S, Fernie, AR, Ferrante, AW, Ferraresi, A, Ferrari, MF, Ferreira, JCB, Ferro-Novick, S, Figueras, A, Filadi, R, Filigheddu, N, FilippiChiela, E, Filomeni, G, Fimia, GM, Fineschi, V, Finetti, F, Finkbeiner, S, Fisher, EA, Fisher, PB, Flamigni, F, Fliesler, SJ, Flo, TH, Florance, I, Florey, O, Florio, T, Fodor, E, Follo, C, Fon, EA, Forlino, A, Fornai, F, Fortini, P, Fracassi, A, Fraldi, A, Franco, B, Franco, R, Franconi, F, Frankel, LB, Friedman, SL, Frohlich, LF, Fruhbeck, G, Fuentes, JM, Fujiki, Y, Fujita, N, Fujiwara, Y, Fukuda, M, Fulda, S, Furic, L, Furuya, N, Fusco, C, Gack, MU, Gaffke, L, Galadari, S, Galasso, A, Galindo, MF, Kankanamalage, SG, Galluzzi, L, Galy, V, Gammoh, N, Gan, BY, Ganley, IG, Gao, F, Gao, H, Gao, MH, Gao, P, Gao, SJ, Gao, WT, Gao, XB, Garcera, A, Garcia, MN, Garcia, VE, Garcia-Del Portillo, F, Garcia-Escudero, V, GarciaGarcia, A, Garcia-Macia, M, Garcia-Moreno, D, Garcia-Ruiz, C, Garcia-Sanz, P, Garg, AD, Gargini, R, Garofalo, T, Garry, RF, Gassen, NC, Gatica, D, Ge, L, Ge, WZ, Geiss-Friedlander, R, Gelfi, C, Genschik, P, Gentle, IE, Gerbino, V, Gerhardt, C, Germain, K, Germain, M, Gewirtz, DA, Afshar, EG, Ghavami, S, Ghigo, A, Ghosh, M, Giamas, G, Giampietri, C, Giatromanolaki, A, Gibson, GE, Gibson, SB, Ginet, V, Giniger, E, Giorgi, C, Girao, H, Girardin, SE, Giridharan, M, Giuliano, S, Giulivi, C, Giuriato, S, Giustiniani, J, Gluschko, A, Goder, V, Goginashvili, A, Golab, J, Goldstone, DC, Golebiewska, A, Gomes, LR, Gomez, R, Gomez-Sanchez, R, Gomez-Puerto, MC, Gomez-Sintes, R, Gong, Q, Goni, FM, Gonzalez-Gallego, J, Gonzalez-Hernandez, T, Gonzalez-Polo, RA, Gonzalez-Reyes, JA, Gonzalez-Rodriguez, P, Goping, IS, Gorbatyuk, MS, Gorbunov, NV, Gorojod, RM, Gorski, SM, Goruppi, S, Gotor, C, Gottlieb, RA, Gozes, I, Gozuacik, D, Graef, M, Graler, MH, Granatiero, V, Grasso, D, Gray, JP, Green, DR, Greenhough, A, Gregory, SL, Griffin, EF, Grinstaff, MW, Gros, F, Grose, C, Gross, AS, Gruber, F, Grumati, P, Grune, T, Gu, XY, Guan, JL, Guardia, CM, Guda, K, Guerra, F, Guerri, C, Guha, P, Guillen, C, Gujar, S, Gukovskaya, A, Gukovsky, I, Gunst, J, Gunther, A, Guntur, AR, Guo, CY, Guo, C, Guo, HQ, Guo, LW, Guo, M, Gupta, P, Fernandez, AF, Gupta, SK, Gupta, S, Gupta, VB, Gupta, V, Gustafsson, AB, Gutterman, DD, Ranjitha, HB, Haapasalo, A, Haber, JE, Hadano, S, Hafren, AJ, Haidar, M, Hall, BS, Hallden, G, Hamacher-Brady, A, Hamann, A, Hamasaki, M, Han, WD, Hansen, M, Hanson, PI, Hao, ZJ, Harada, M, Harhaji-Trajkovic, L, Hariharan, N, Haroon, N, Harris, J, Hasegawa, T, Nagoor, NH, Haspel, JA, Haucke, V, Hawkins, WD, Hay, BA, Haynes, CM, Hayrabedyan, SB, Hays, TS, He, CC, He, Q, He, RR, He, YW, He, YY, Heakal, Y, Heberle, AM, Hejtmancik, JF, Helgason, GV, Henkel, V, Herb, M, Hergovich, A, Herman-Antosiewicz, A, Hernandez, A, Hernandez, C, Hernandez-Diaz, S, Hernandez-Gea, V, Herpin, A, Herreros, J, Hervas, JH, Hesselson, D, Hetz, C, Heussler, VT, Higuchi, Y, Hilfiker, S, Hill, JA, Hlavacek, WS, Ho, EA, Ho, IHT, Ho, PWL, Ho, S, Ho, WY, Hobbs, GA, Hochstrasser, M, Hoet, PHM, Hofius, D, Hofman, P, Hohn, A, Holmberg, CI, Hombrebueno, JR, Hong, CW, Hong, YR, Hooper, LV, Hoppe, T, Horos, R, Hoshida, Y, Hsin, IL, Hsu, HY, Hu, B, Hu, D, Hu, LF, Hu, MC, Hu, RG, Hu, W, Hu, YC, Hu, ZW, Hua, F, Hua, JL, Hua, YQ, Huan, CM, Huang, CH, Huang, CS, Huang, CX, Huang, CL, Huang, HS, Huang, K, Huang, MLH, Huang, R, Huang, S, Huang, TZ, Huang, X, Huang, YJ, Huber, TB, Hubert, V, Hubner, CA, Hughes, SM, Hughes, WE, Humbert, M, Hummer, G, Hurley, JH, Hussain, S, Hussey, PJ, Hutabarat, M, Hwang, HY, Hwang, S, Ieni, A, Ikeda, F, Imagawa, Y, Imai, Y, Imbriano, C, Imoto, M, Inman, DM, Inoki, K, Iovanna, J, Iozzo, RV, Ippolito, G, Irazoqui, JE, Iribarren, P, Ishaq, M, Ishikawa, M, Ishimwe, N, Isidoro, C, Ismail, N, Issazadeh-Navikas, S, Itakura, E, Ito, D, Ivankovic, D, Ivanova, S, Iyer, AKV, Izquierdo, JM, Izumi, M, Jaattela, M, Jabir, MS, Jackson, WT, Jacobo-Herrera, N, Jacomin, AC, Jacquin, E, Jadiya, P, Jaeschke, H, Jagannath, C, Jakobi, AJ, Jakobsson, J, Janji, B, JansenDurr, P, Jansson, PJ, Jantsch, J, Januszewski, S, Jassey, A, Jean, S, JeltschDavid, H, Jendelova, P, Jenny, A, Jensen, TE, Jessen, N, Jewell, JL, Ji, J, Jia, LJ, Jia, R, Jiang, LW, Jiang, Q, Jiang, RC, Jiang, T, Jiang, XJ, Jiang, Y, Jimenez-Sanchez, M, Jin, EJ, Jin, FY, Jin, HC, Jin, L, Jin, LQ, Jin, MY, Jin, S, Jo, EK, Joffre, C, Johansen, T, Johnson, GVW, Johnston, SA, Jokitalo, E, Jolly, MK, Joosten, LAB, Jordan, J, Joseph, B, Ju, DW, Ju, JS, Ju, JF, Juarez, E, Judith, D, Juhasz, G, Jun, Y, Jung, CH, Jung, S, Jung, YK, Jungbluth, H, Jungverdorben, J, Just, S, Kaarniranta, K, Kaasik, A, Kabuta, T, Kaganovich, D, Kahana, A, Kain, R, Kajimura, S, Kalamvoki, M, Kalia, M, Kalinowski, DS, Kaludercic, N, Kalvari, I, Kaminska, J, Kaminskyy, VO, Kanamori, H, Kanasaki, K, Kang, C, Kang, R, Kang, SS, Kaniyappan, S, Kanki, T, Kanneganti, TD, Kanthasamy, AG, Kanthasamy, A, Kantorow, M, Kapuy, O, Karamouzis, MV, Karim, MR, Karmakar, P, Katare, RG, Kato, M, Kaufmann, SHE, Kauppinen, A, Kaushal, GP, Kaushik, S, Kawasaki, K, Kazan, K, Ke, PY, Keating, DJ, Keber, U, Kehrl, JH, Keller, KE, Keller, CW, Kemper, JK, Kenific, CM, Kepp, O, Kermorgant, S, Kern, A, Ketteler, R, Keulers, TG, Khalfin, B, Khalil, H, Khambu, B, Khan, SY, Khandelwal, VKM, Khandia, R, Kho, W, Khobrekar, NV, Khuansuwan, S, Khundadze, M, Killackey, SA, Kim, D, Kim, DR, Kim, DH, Kim, DE, Kim, EY, Kim, EK, Kim, H, Kim, HS, Kim, HR, Kim, JH, Kim, JK, Kim, J, Kim, KI, Kim, PK, Kim, SJ, Kimball, SR, Kimchi, A, Kimmelman, AC, Kimura, T, King, MA, Kinghorn, KJ, Kinsey, CG, Kirkin, V, Kirshenbaum, LA, Kiselev, SL, Kishi, S, Kitamoto, K, Kitaoka, Y, Kitazato, K, Kitsis, RN, Kittler, JT, Kjaerulff, O, Klein, PS, Klopstock, T, Klucken, J, Knovelsrud, H, Knorr, RL, Ko, BB, Ko, F, Ko, JL, Kobayashi, H, Kobayashi, S, Koch, I, Koch, JC, Koenig, U, Kogel, D, Koh, YH, Koike, M, Kohlwein, SD, Kocaturk, NM, Komatsu, M, Konig, J, Kono, T, Kopp, BT, Korcsmaros, T, Korkmaz, G, Korolchuk, VI, Korsnes, MS, Koskela, A, Kota, J, Kotake, Y, Kotler, ML, Kou, YJ, Koukourakis, MI, Koustas, E, Kovacs, AL, Kovacs, T, Koya, D, Kozako, T, Kraft, C, Krainc, D, Kramer, H, Krasnodembskaya, AD, Kretz-Remy, C, Kroemer, G, Ktistakis, NT, Kuchitsu, K, Kuenen, S, Kuerschner, L, Kukar, T, Kumar, A, Kumar, D, Kumar, S, Kume, S, Kumsta, C, Kundu, CN, Kundu, M, Kunnumakkara, AB, Kurgan, L, Kutateladze, TG, Kutlu, O, Kwak, S, Kwon, HJ, Kwon, TK, Kwon, YT, Kyrmizi, I, La Spada, A, Labonte, P, Ladoire, S, Laface, I, Lafont, F, Lagace, DC, Lahiri, V, Lai, ZB, Laird, AS, Lakkaraju, A, Lamark, T, Lan, SH, Landajuela, A, Lane, DJR, Lane, JD, Lang, CH, Lange, C, Langer, R, Lapaquette, P, Laporte, J, LaRusso, NF, Lastres-Becker, I, Lau, WCY, Laurie, GW, Lavandero, S, Law, BYK, Law, HKW, Layfield, R, Le, WD, Le Stunff, H, Leary, AY, Lebrun, JJ, Leck, LYW, Leduc-Gaudet, JP, Lee, C, Lee, CP, Lee, DH, Lee, EB, Lee, EF, Lee, GM, Lee, HJ, Lee, HK, Lee, JM, Lee, JS, Lee, JA, Lee, JY, Lee, JH, Lee, M, Lee, MG, Lee, MJ, Lee, MS, Lee, SY, Lee, SJ, Lee, SB, Lee, WH, Lee, YR, Lee, YH, Lee, Y, Lefebvre, C, Legouis, R, Lei, YL, Lei, YC, Leikin, S, Leitinger, G, Lemus, L, Leng, SL, Lenoir, O, Lenz, G, Lenz, HJ, Lenzi, P, Leon, Y, Leopoldino, AM, Leschczyk, C, Leskela, S, Letellier, E, Leung, CT, Leung, PS, Leventhal, JS, Levine, B, Lewis, PA, Ley, K, Li, B, Li, DQ, Li, JM, Li, J, Li, K, Li, LW, Li, M, Li, MC, Li, PL, Li, MQ, Li, Q, Li, S, Li, TG, Li, W, Li, WM, Li, X, Li, YP, Li, Y, Li, ZQ, Li, ZY, Lian, JQ, Liang, CY, Liang, QR, Liang, WC, Liang, YH, Liang, YT, Liao, GH, Liao, LJ, Liao, MZ, Liao, YF, Librizzi, M, Lie, PPY, Lilly, MA, Lim, HJ, Lima, TRR, Limana, F, Lin, C, Lin, CW, Lin, DS, Lin, FC, Lin, JDD, Lin, KM, Lin, KH, Lin, LT, Lin, PH, Lin, Q, Lin, SF, Lin, SJ, Lin, WY, Lin, XY, Lin, YX, Lin, YS, Linden, R, Lindner, P, Ling, SC, Lingor, P, Linnemann, AK, Liou, Y, Lipinski, MM, Lipovsek, S, Lira, VA, Lisiak, N, Liton, PB, Liu, C, Liu, CH, Liu, CF, Liu, F, Liu, H, Liu, HS, Liu, HF, Liu, J, Liu, JL, Liu, LY, Liu, LH, Liu, ML, Liu, Q, Liu, W, Liu, WD, Liu, XH, Liu, XD, Liu, XG, Liu, X, Liu, YF, Liu, Y, Liu, YY, Liu, YL, Livingston, JA, Lizard, G, Lizcano, JM, Ljubojevic-Holzer, S, LLeonart, ME, Llobet-Navas, D, Llorente, A, Lo, CH, Lobato-Marquez, D, Long, Q, Long, YC, Loos, B, Loos, JA, Lopez, MG, Lopez-Domenech, G, Lopez-Guerrero, JA, Lopez-Jimenez, AT, Lopez-Valero, I, Lorenowicz, MJ, Lorente, M, Lorincz, P, Lossi, L, Lotersztajn, S, Lovat, PE, Lovell, JF, Lovy, A, Lu, G, Lu, HC, Lu, JH, Lu, JJ, Lu, MJ, Lu, SY, Luciani, A, Lucocq, JM, Ludovico, P, Luftig, MA, Luhr, M, Luis-Ravelo, D, Lum, JJ, Luna-Dulcey, L, Lund, AH, Lund, VK, Lunemann, JD, Luningschror, P, Luo, HL, Luo, RC, Luo, SQ, Luo, Z, Luparello, C, Luscher, B, Luu, L, Lyakhovich, A, Lyamzaev, KG, Lystad, AH, Lytvynchuk, L, Ma, AC, Ma, CL, Ma, MX, Ma, NF, Ma, QH, Ma, XL, Ma, YY, Ma, ZY, MacDougald, OA, Macian, F, MacIntosh, GC, MacKeigan, JP, Macleod, KF, Maday, S, Madeo, F, Madesh, M, Madl, T, Madrigal-Matute, J, Maeda, A, Maejima, Y, Magarinos, M, Mahavadi, P, Maiani, E, Maiese, K, Maiti, P, Maiuri, MC, Majello, B, Major, MB, Makareeva, E, Malik, F, Mallilankaraman, K, Malorni, W, Maloyan, A, Mammadova, N, Man, GCW, Manai, F, Mancias, JD, Mandelkow, EM, Mandell, MA, Manfredi, AA, Manjili, MH, Manjithaya, R, Manque, P, Manshian, BB, Manzano, R, Manzoni, C, Mao, K, Marchese, C, Marchetti, S, Marconi, AM, Marcucci, F, Mardente, S, Mareninova, OA, Margeta, M, Mari, M, Marinelli, S, Marinelli, O, Marino, G, Mariotto, S, Marshall, RS, Marten, MR, Martens, S, Martin, APJ, Martin, KR, Martin, S, Martin-Segura, A, Martin-Acebes, MA, Martin-Burriel, I, Martin-Rincon, M, Martin-Sanz, P, Martina, JA, Martinet, W, Martinez, A, Martinez, J, Velazquez, MM, Martinez-Lopez, N, Martinez-Vicente, M, Martins, DO, Lange, U, Lopez-Perez, O, Martins, JO, Martins, WK, Martins-Marques, T, Marzetti, E, Masaldan, S, Masclaux-Daubresse, C, Mashek, DG, Massa, V, Massieu, L, Masson, GR, Masuelli, L, Masyuk, AI, Masyuk, TV, Matarrese, P, Matheu, A, Matoba, S, Matsuzaki, S, Mattar, P, Matte, A, Mattoscio, D, Mauriz, JL, Mauthe, M, Mauvezin, C, Maverakis, E, Maycotte, P, Mayer, J, Mazzoccoli, G, Mazzoni, C, Mazzulli, JR, McCarty, N, McDonald, C, McGill, MR, McKenna, SL, McLaughlin, B, McLoughlin, F, McNiven, MA, McWilliams, TG, Mechta-Grigoriou, F, Medeiros, TC, Medina, DL, Megeney, LA, Megyeri, K, Mehrpour, M, Mehta, JL, Meijer, AJ, Meijer, AH, Mejlvang, J, Melendez, A, Melk, A, Memisoglu, G, Mendes, AF, Meng, D, Meng, F, Meng, T, Menna-Barreto, R, Menon, MB, Mercer, C, Mercier, AE, Mergny, JL, Merighi, A, Merkley, SD, Merla, G, Meske, V, Mestre, AC, Metur, SP, Meyer, C, Meyer, H, Mi, WY, Mialet-Perez, J, Miao, JY, Micale, L, Miki, Y, Milan, E, Miller, DL, Miller, SI, Miller, S, Millward, SW, Milosevic, I, Minina, EA, Mirzaei, H, Mirzaei, HR, Mirzaei, M, Mishra, A, Mishra, N, Mishra, PK, Marjanovic, MM, Misasi, R, Misra, A, Misso, G, Mitchell, C, Mitou, G, Miura, T, Miyamoto, S, Miyazaki, M, Miyazaki, T, Miyazawa, K, Mizushima, N, Mogensen, TH, Mograbi, B, Mohammadinejad, R, Mohamud, Y, Mohanty, A, Mohapatra, S, Mohlmann, T, Mohmmed, A, Moles, A, Moley, KH, Molinari, M, Mollace, V, Muller, AB, Mollereau, B, Mollinedo, F, Montagna, C, Monteiro, MJ, Montella, A, Montes, LR, Montico, B, Mony, VK, Compagnoni, GM, Moore, MN, Moosavi, MA, Mora, AL, Mora, M, Morales-Alamo, D, Moratalla, R, Moreira, PI, Morelli, E, Moreno, S, Moreno-Blas, D, Moresi, V, Morga, B, Morgan, AH, Morin, F, Morishita, H, Moritz, OL, Moriyama, M, Moriyasu, Y, Morleo, M, Morselli, E, Moruno-Manchon, JF, Moscat, J, Mostowy, S, Motori, E, Moura, AF, Moustaid-Moussa, N, Mrakovcic, M, MucinoHernandez, G, Mukherjee, A, Mukhopadhyay, S, Levy, JMM, Mulero, V, Muller, S, Munch, C, Munjal, A, Munoz-Canoves, P, Munoz-Galdeano, T, Munz, C, Murakawa, T, Muratori, C, Murphy, BM, Murphy, JP, Murthy, A, Myohanen, TT, Mysorekar, IU, Mytych, J, Nabavi, SM, Nabissi, M, Nagy, P, Nah, J, Nahimana, A, Nakagawa, I, Nakamura, K, Nakatogawa, H, Nandi, SS, Nanjundan, M, Nanni, M, Napolitano, G, Nardacci, R, Narita, M, Nassif, M, Nathan, I, Natsumeda, M, Naude, RJ, Naumann, C, Naveiras, O, Navid, F, Nawrocki, ST, Nazarko, TY, Nazio, F, Negoita, F, Neill, T, Neisch, AL, Neri, LM, Netea, MG, Neubert, P, Neufeld, TP, Neumann, D, Neutzner, A, Newton, PT, Ney, PA, Nezis, IP, Ng, CCW, Ng, TB, Nguyen, HTT, Nguyen, LT, Ni, HM, Cheallaigh, CN, Ni, Z, Nicolao, MC, Nicoli, F, Nieto-Diaz, M, Nilsson, P, Ning, S, Niranjan, R, Nishimune, H, Niso-Santano, M, Nixon, RA, Nobili, A, Nobrega, C, Noda, T, Nogueira-Recalde, U, Nolan, TM, Nombela, I, Novak, I, Novoa, B, Nozawa, T, Nukina, N, Nussbaum-Krammer, C, Nylandsted, J, O'Donovan, TR, O'Leary, SM, O'Rourke, EJ, O'Sullivan, MP, O'Sullivan, TE, Oddo, S, Oehme, I, Ogawa, M, Ogier-Denis, E, Ogmundsdottir, MH, Ogretmen, B, Oh, GT, Oh, SH, Oh, YJ, Ohama, T, Ohashi, Y, Ohmuraya, M, Oikonomou, V, Ojha, R, Okamoto, K, Okazawa, H, Oku, M, Olivan, S, Oliveira, JMA, Ollmann, M, Olzmann, JA, Omari, S, Omary, MB, Onal, G, Ondrej, M, Ong, SB, Ong, SG, Onnis, A, Orellana, JA, Orellana-Munoz, S, Ortega-Villaizan, MD, Ortiz-Gonzalez, XR, Ortona, E, Osiewacz, HD, Osman, AHK, Osta, R, Otegui, MS, Otsu, K, Ott, C, Ottobrini, L, Ou, JHJ, Outeiro, TF, Oynebraten, I, Ozturk, M, Pages, G, Pahari, S, Pajares, M, Pajvani, UB, Pal, R, Paladino, S, Pallet, N, Palmieri, M, Palmisano, G, Palumbo, C, Pampaloni, F, Pan, LF, Pan, QJ, Pan, WL, Pan, X, Panasyuk, G, Pandey, R, Pandey, UB, Pandya, V, Paneni, F, Pang, SY, Panzarini, E, Papademetrio, DL, Papaleo, E, Papinski, D, Papp, D, Park, EC, Park, HT, Park, JM, Park, J, Park, JT, Park, SC, Park, SY, Parola, AH, Parys, JB, Pasquier, A, Pasquier, B, Passos, JF, Pastore, N, Patel, HH, Patschan, D, Pattingre, S, Pedraza-Alva, G, Pedraza-Chaverri, J, Pedrozo, Z, Pei, G, Pei, JM, Peled-Zehavi, H, Pellegrini, JM, Pelletier, J, Penalva, MA, Peng, D, Peng, Y, Penna, F, Pennuto, M, Pentimalli, F, Pereira, CM, Pereira, GJS, Pereira, LC, de Almeida, LP, Perera, ND, PerezOliva, AB, Perez-Perez, ME, Periyasamy, P, Perl, A, Perrotta, C, Perrotta, I, Pestell, RG, Petersen, M, Petrache, I, Petrovski, G, Pfirrmann, T, Pfister, AS, Philips, JA, Pi, HF, Picca, A, Pickrell, AM, Picot, S, Pierantoni, GM, Pierdominici, M, Pierre, P, Pierrefite-Carle, V, Pierzynowska, K, Pietrocola, F, Pietruczuk, M, Pignata, C, PimentelMuinos, FX, Pinar, M, Pinheiro, RO, Pinkas-Kramarski, R, Pinton, P, Pircs, K, Piya, S, Pizzo, P, Plantinga, TS, Platta, HW, Plaza-Zabala, A, Plomann, M, Plotnikov, EY, Plun-Favreau, H, Pluta, R, Pocock, R, Poggeler, S, Pohl, C, Poirot, M, Poletti, A, Ponpuak, M, Popelka, H, Popova, B, Porta, H, Alcon, SP, Portilla-Fernandez, E, Post, M, Potts, MB, Poulton, J, Powers, T, Prahlad, V, Prajsnar, TK, Pratico, D, Prencipe, R, Priault, M, ProikasCezanne, T, Promponas, VJ, Proud, CG, Puertollano, R, Puglielli, L, Pulinilkunnil, T, Puri, D, Puri, R, Puyal, J, Qi, XP, Qi, YM, Qian, WB, Qiang, L, Qiu, Y, Quadrilatero, J, Quarleri, J, Raben, N, Rabinowich, H, Ragona, D, Ragusa, MJ, Rahimi, N, Rahmati, M, Raia, V, Raimundo, N, Rajasekaran, NS, Rao, SR, Rami, A, Ramirez-Pardo, I, Ramsden, DB, Randow, F, Rangarajan, PN, Ranieri, D, Rao, H, Rao, L, Rao, R, Rathore, S, Ratnayaka, JA, Ratovitski, EA, Ravanan, P, Ravegnini, G, Ray, SK, Razani, B, Rebecca, V, Reggiori, F, Regnier-Vigouroux, A, Reichert, AS, Reigada, D, Reiling, JH, Rein, T, Reipert, S, Rekha, RS, Ren, HM, Ren, J, Ren, WC, Renault, T, Renga, G, Reue, K, Rewitz, K, Ramos, BRD, Riazuddin, SA, Ribeiro-Rodrigues, TM, Ricci, JE, Ricci, R, Riccio, V, Richardson, D, Rikihisa, Y, Risbud, MV, Risueno, RM, Ritis, K, Rizza, S, Rizzuto, R, Roberts, HC, Roberts, LD, Robinson, KJ, Roccheri, MC, Rocchi, S, Rodney, GG, Rodrigues, T, Silva, VRR, Rodriguez, A, Rodriguez-Barrueco, R, Rodriguez-Henche, N, Rodriguez-Rocha, H, Roelofs, J, Rogers, RS, Rogov, VV, Rojo, AI, Rolka, K, Romanello, V, Romani, L, Romano, A, Romano, PS, Romeo-Guitart, D, Romero, LC, Romero, M, Roney, JC, Rongo, C, Roperto, S, Rosenfeldt, MT, Rosenstiel, P, Rosenwald, AG, Roth, KA, Roth, L, Roth, S, Rouschop, KMA, Roussel, BD, Roux, S, Rovere-Querini, P, Roy, A, Rozieres, A, Ruano, D, Rubinsztein, DC, Rubtsova, MP, Ruckdeschel, K, Ruckenstuhl, C, Rudolf, E, Rudolf, R, Ruggieri, A, Ruparelia, AA, Rusmini, P, Russell, RR, Russo, GL, Russo, M, Russo, R, Ryabaya, OO, Ryan, KM, Ryu, KY, Sabater-Arcis, M, Sachdev, U, Sacher, M, Sachse, C, Sadhu, A, Sadoshima, J, Safren, N, Saftig, P, Sagona, AP, Sahay, G, Sahebkar, A, Sahin, M, Sahin, O, Sahni, S, Saito, N, Saito, S, Saito, T, Sakai, R, Sakai, Y, Sakamaki, JI, Saksela, K, Salazar, G, Salazar-Degracia, A, Salekdeh, GH, Saluja, AK, Sampaio-Marques, B, Sanchez, MC, Sanchez-Alcazar, JA, Sanchez-Vera, V, Sancho-Shimizu, V, Sanderson, JT, Sandri, M, Santaguida, S, Santambrogio, L, Santana, MM, Santoni, G, Sanz, A, Sanz, P, Saran, S, Sardiello, M, Sargeant, TJ, Sarin, A, Sarkar, C, Sarkar, S, Sarrias, MR, Sarmah, DT, Sarparanta, J, Sathyanarayan, A, Sathyanarayanan, R, Scaglione, KM, Scatozza, F, Schaefer, L, Schafer, ZT, Schaible, UE, Schapira, AHV, Scharl, M, Schatzl, HM, Schein, CH, Scheper, W, Scheuring, D, Schiaffino, MV, Schiappacassi, M, Schindl, R, Schlattner, U, Schmidt, O, Schmitt, R, Schmidt, SD, Schmitz, I, Schmukler, E, Schneider, A, Schneider, BE, Schober, R, Schoijet, AC, Schott, MB, Schramm, M, Schroder, B, Schuh, K, Schuller, C, Schulze, RJ, Schurmanns, L, Schwamborn, JC, Schwarten, M, Scialo, F, Sciarretta, S, Scott, MJ, Scotto, KW, Scovassi, AI, Scrima, A, Scrivo, A, Sebastian, D, Sebti, S, Sedej, S, Segatori, L, Segev, N, Seglen, PO, Seiliez, I, Seki, E, Selleck, SB, Sellke, FW, Perez-Lara, A, Selsby, JT, Sendtner, M, Senturk, S, Seranova, E, Sergi, C, Serra-Moreno, R, Sesaki, H, Settembre, C, Setty, SRG, Sgarbi, G, Sha, O, Shacka, JJ, Shah, JA, Shang, DT, Shao, CS, Shao, F, Sharbati, S, Sharkey, LM, Sharma, D, Sharma, G, Sharma, K, Sharma, P, Sharma, S, Shen, HM, Shen, HT, Shen, JG, Shen, M, Shen, WL, Shen, ZN, Sheng, R, Sheng, Z, Sheng, ZH, Shi, JJ, Shi, XB, Shi, YH, Shiba-Fukushima, K, Shieh, J, Shimada, Y, Shimizu, S, Shimozawa, M, Shintani, T, Shoemaker, CJ, Shojaei, S, Shoji, I, Shravage, BV, Shridhar, V, Shu, CW, Shu, HB, Shui, K, Shukla, AK, Shutt, TE, Sica, V, Siddiqui, A, Sierra, A, Sierra-Torre, V, Signorelli, S, Sil, P, Silva, BJD, Silva, JD, Silva-Pavez, E, Silvente-Poirot, S, Simmonds, RE, Simon, AK, Simon, HU, Simons, M, Singh, A, Singh, LP, Singh, R, Singh, SV, Singh, SK, Singh, SB, Singh, S, Singh, SP, Sinha, D, Sinha, RA, Sinha, S, Sirko, A, Sirohi, K, Sivridis, EL, Skendros, P, Skirycz, A, Slaninova, I, Smaili, SS, Smertenko, A, Smith, MD, Soenen, SJ, Sohn, EJ, Sok, SPM, Solaini, G, Soldati, T, Soleimanpour, SA, Soler, RM, Solovchenko, A, Somarelli, JA, Sonawane, A, Song, FY, Song, HK, Song, JX, Song, KH, Song, ZY, Soria, LR, Sorice, M, Soukas, AA, Soukup, SF, Sousa, D, Sousa, N, Spagnuolo, PA, Spector, SA, Bharath, MMS, St Clair, D, Stagni, V, Staiano, L, Stalnecker, CA, Stankov, MV, Stathopulos, PB, Stefan, K, Stefan, SM, Stefanis, L, Steffan, JS, Steinkasserer, A, Stenmark, H, Sterneckert, J, Stevens, C, Stoka, V, Storch, S, Stork, B, Strappazzon, F, Strohecker, AM, Stupack, DG, Su, HX, Su, LY, Su, LX, SuarezFontes, AM, Subauste, CS, Subbian, S, Subirada, PV, Sudhandiran, G, Sue, CM, Sui, XB, Summers, C, Sun, GC, Sun, J, Sun, K, Sun, MX, Sun, QM, Sun, Y, Sun, ZJ, Sunahara, KKS, Sundberg, E, Susztak, K, Sutovsky, P, Suzuki, H, Sweeney, G, Symons, JD, Sze, SCW, Szewczyk, NJ, Tabolacci, C, Tacke, F, Taegtmeyer, H, Tafani, M, Tagaya, M, Tai, HR, Tait, SWG, Takahashi, Y, Takats, S, Talwar, P, Tam, C, Tam, SY, Tampellini, D, Tamura, A, Tan, CT, Tan, EK, Tan, YQ, Tanaka, M, Tang, D, Tang, JF, Tang, TS, Tanida, I, Tao, ZP, Taouis, M, Tatenhorst, L, Tavernarakis, N, Taylor, A, Taylor, GA, Taylor, JM, Tchetina, E, Tee, AR, Tegeder, I, Teis, D, Teixeira, N, Teixeira-Clerc, F, Tekirdag, KA, Tencomnao, T, Tenreiro, S, Tepikin, AV, Testillano, PS, Tettamanti, G, Tharaux, P, Thedieck, K, Thekkinghat, AA, Thellung, S, Thinwa, JW, Thirumalaikumar, VP, Thomas, SM, Thomes, PG, Thorburn, A, Thukral, L, Thum, T, Thumm, M, Tian, L, Tichy, A, Till, A, Timmerman, V, Titorenko, VI, Todi, SV, Todorova, K, Toivonen, JM, Tomaipitinca, L, Tomar, D, Tomas-Zapico, C, Tong, BCK, Tong, C, Tong, X, Tooze, SA, Torgersen, ML, Torii, S, Torres-Lopez, L, Torriglia, A, Towers, CG, Towns, R, Toyokuni, S, Trajkovic, V, Tramontano, D, Tran, Q, Travassos, LH, Trelford, CB, Tremel, S, Trougakos, IP, Tsao, BP, Tschan, MP, Tse, HF, Tse, TF, Tsugawa, H, Tsvetkov, AS, Tumbarello, DA, Tumtas, Y, Tunon, MJ, Turcotte, S, Turk, B, Turk, V, Turner, BJ, Tuxworth, RI, Tyler, JK, Tyutereva, EV, Uchiyama, Y, UgunKlusek, A, Uhlig, HH, Ulasov, IV, Umekawa, M, Ungermann, C, Unno, R, Urbe, S, Uribe-Carretero, E, Ustun, S, Uversky, VN, Vaccari, T, Vaccaro, MI, Vahsen, BF, Vakifahmetoglu-Norberg, H, Valdor, R, Valente, MJ, Valko, A, Vallee, RB, Valverde, AM, Van den Berghe, G, van Der Veen, S, Van Kaer, L, van Loosdregt, J, van Wijk, SJL, Vandenberghe, W, Vanhorebeek, I, Vannier-Santos, MA, Vannini, N, Vanrell, MC, Vantaggiato, C, Varano, G, Varela-Nieto, I, Varga, M, Vasconcelos, MH, Vats, S, Vavvas, DG, VegaNaredo, I, Vega-Rubin-de-Celis, S, Velasco, G, Velazquez, AP, Vellai, T, Vellenga, E, Velotti, F, Verdier, M, Verginis, P, Vergne, I, Verkade, P, Verma, M, Verstreken, P, Vervliet, T, Vervoorts, J, Vessoni, AT, Victor, VM, Vidal, M, Vidoni, C, Vieira, OV, Vierstra, RD, Vigano, S, Vihinen, H, Vijayan, V, Vila, M, Vilar, M, Villalba, JM, Villalobo, A, Villarejo-Zori, B, Villarroya, F, Villarroya, J, Vincent, O, Vindis, C, Viret, C, Viscomi, MT, Visnjic, D, Vitale, I, Vocadlo, DJ, Voitsekhovskaja, OV, Volonte, C, Volta, M, Vomero, M, Von Haefen, C, Vooijs, MA, Voos, W, Vucicevic, L, Wade-Martins, R, Waguri, S, Waite, KA, Wakatsuki, S, Walker, DW, Walker, MJ, Walker, SA, Walter, J, Wandosell, FG, Wang, B, Wang, CY, Wang, C, Wang, CR, Wang, CW, Wang, D, Wang, FY, Wang, F, Wang, FM, Wang, GS, Wang, H, Wang, HX, Wang, HG, Wang, JR, Wang, JG, Wang, J, Wang, JD, Wang, K, Wang, LR, Wang, LM, Wang, MH, Wang, MQ, Wang, NB, Wang, PW, Wang, PP, Wang, P, Wang, QJ, Wang, Q, Wang, QK, Wang, QA, Wang, WT, Wang, WY, Wang, XN, Wang, XJ, Wang, Y, Wang, YC, Wang, YZ, Wang, YY, Wang, YH, Wang, YP, Wang, YQ, Wang, Z, Wang, ZY, Wang, ZG, Warnes, G, Warnsmann, V, Watada, H, Watanabe, E, Watchon, M, Weaver, TE, Wegrzyn, G, Wehman, AM, Wei, HF, Wei, L, Wei, TT, Wei, YJ, Weiergraber, OH, Weihl, CC, Weindl, G, Weiskirchen, R, Wells, A, Wen, RXH, Wen, X, Werner, A, Weykopf, B, Wheatley, SP, Whitton, JL, Whitworth, AJ, Wiktorska, K, Wildenberg, ME, Wileman, T, Wilkinson, S, Willbold, D, Williams, B, Williams, RSB, Williams, RL, Williamson, PR, Wilson, RA, Winner, B, Winsor, NJ, Witkin, SS, Wodrich, H, Woehlbier, U, Wollert, T, Wong, E, Wong, JH, Wong, RW, Wong, VKW, Wong, WWL, Wu, AG, Wu, CB, Wu, J, Wu, JF, Wu, KK, Wu, M, Wu, SY, Wu, SZ, Wu, SF, Wu, WKK, Wu, XH, Wu, XQ, Wu, YW, Wu, YH, Xavier, RJ, Xia, HG, Xia, LX, Xia, ZY, Xiang, G, Xiang, J, Xiang, ML, Xiang, W, Xiao, B, Xiao, GZ, Xiao, HY, Xiao, HT, Xiao, J, Xiao, L, Xiao, S, Xiao, Y, Xie, BM, Xie, CM, Xie, M, Xie, YX, Xie, ZP, Xie, ZL, Xilouri, M, Xu, CF, Xu, E, Xu, HX, Xu, J, Xu, JR, Xu, L, Xu, WW, Xu, XL, Xue, Y, Yakhine-Diop, SMS, Yamaguchi, M, Yamaguchi, O, Yamamoto, A, Yamashina, S, Yan, SM, Yan, SJ, Yan, Z, Yanagi, Y, Yang, CB, Yang, DS, Yang, H, Yang, HT, Yang, JM, Yang, J, Yang, JY, Yang, L, Yang, M, Yang, PM, Yang, Q, Yang, S, Yang, SF, Yang, WN, Yang, WY, Yang, XY, Yang, XS, Yang, Y, Yao, HH, Yao, SG, Yao, XQ, Yao, YG, Yao, YM, Yasui, T, Yazdankhah, M, Yen, PM, Yi, C, Yin, XM, Yin, YH, Yin, ZY, Ying, MD, Ying, Z, Yip, CK, Yiu, SPT, Yoo, YH, Yoshida, K, Yoshii, SR, Yoshimori, T, Yousefi, B, Yu, BX, Yu, HY, Yu, J, Yu, L, Yu, ML, Yu, SW, Yu, VC, Yu, WH, Yu, ZP, Yu, Z, Yuan, JY, Yuan, LQ, Yuan, SL, Yuan, SSF, Yuan, YG, Yuan, ZQ, Yue, JB, Yue, ZY, Yun, J, Yung, RL, Zacks, DN, Zaffagnini, G, Zambelli, VO, Zanella, I, Zang, QS, Zanivan, S, Zappavigna, S, Zaragoza, P, Zarbalis, KS, Zarebkohan, A, Zarrouk, A, Zeitlin, SO, Zeng, JL, Zeng, JD, Zerovnik, E, Zhan, LX, Zhang, B, Zhang, DD, Zhang, HL, Zhang, H, Zhang, HH, Zhang, HF, Zhang, HY, Zhang, JB, Zhang, JH, Zhang, JP, Zhang, KLYB, Zhang, LSW, Zhang, L, Zhang, LS, Zhang, LY, Zhang, MH, Zhang, P, Zhang, S, Zhang, W, Zhang, XN, Zhang, XW, Zhang, XL, Zhang, XY, Zhang, X, Zhang, XX, Zhang, XD, Zhang, Y, Zhang, YJ, Zhang, YD, Zhang, YM, Zhang, YY, Zhang, YC, Zhang, Z, Zhang, ZG, Zhang, ZB, Zhang, ZH, Zhang, ZY, Zhang, ZL, Zhao, HB, Zhao, L, Zhao, S, Zhao, TB, Zhao, XF, Zhao, Y, Zhao, YC, Zhao, YL, Zhao, YT, Zheng, GP, Zheng, K, Zheng, L, Zheng, SZ, Zheng, XL, Zheng, Y, Zheng, ZG, Zhivotovsky, B, Zhong, Q, Zhou, A, Zhou, B, Zhou, CF, Zhou, G, Zhou, H, Zhou, HB, Zhou, J, Zhou, JY, Zhou, KL, Zhou, RJ, Zhou, XJ, Zhou, YS, Zhou, YH, Zhou, YB, Zhou, ZY, Zhou, Z, Zhu, BL, Zhu, CL, Zhu, GQ, Zhu, HN, Zhu, HX, Zhu, H, Zhu, WG, Zhu, YP, Zhu, YS, Zhuang, HX, Zhuang, XH, Zientara-Rytter, K, Zimmermann, CM, Ziviani, E, Zoladek, T, Zong, WX, Zorov, DB, Zorzano, A, Zou, WP, Zou, Z, Zou, ZZ, Zuryn, S, Zwerschke, W, Brand-Saberi, B, Dong, XC, Kenchappa, CS, Li, ZG, Lin, Y, Oshima, S, Rong, YG, Sluimer, JC, Stallings, CL, and Tong, CK
- Subjects
flux ,macroautophagy ,phagophore ,stress ,vacuole ,Autophagosome ,LC3 ,lysosome ,neurodegeneration ,cancer - Abstract
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.