1. Mirror Symmetry and the Classification of Orbifold del Pezzo Surfaces
- Author
-
Alexander M. Kasprzyk, Andrea Petracci, Ketil Tveiten, Alessio Corti, Mohammad Akhtar, Alessandro Oneto, Liana Heuberger, Thomas Prince, Tom Coates, Akhtar M., Coates T., Corti A., Heuberger L., Kasprzyk A., Oneto A., Petracci A., Prince T., Tveiten K., and Commission of the European Communities
- Subjects
Class (set theory) ,Pure mathematics ,SINGULARITIES ,General Mathematics ,Mathematics, Applied ,14J33, 14J45, 52B20 (Primary), 14J10, 14N35 (Secondary) ,Fano plane ,DEFORMATIONS ,01 natural sciences ,Mirror symmetry, del Pezzo surfaces ,0101 Pure Mathematics ,math.AG ,Mathematics - Algebraic Geometry ,Mathematics::Algebraic Geometry ,0103 physical sciences ,FOS: Mathematics ,Mathematics - Combinatorics ,0101 mathematics ,math.CO ,Algebraic Geometry (math.AG) ,Orbifold ,Quotient ,Mathematics ,Science & Technology ,Mathematics::Commutative Algebra ,GEOMETRY ,Applied Mathematics ,010102 general mathematics ,State (functional analysis) ,Physical Sciences ,Gravitational singularity ,010307 mathematical physics ,TORUS ACTIONS ,Combinatorics (math.CO) ,Mirror symmetry ,VARIETIES - Abstract
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with Q-Gorenstein deformation classes of del Pezzo surfaces., Comment: 14 pages. v2: references updated
- Published
- 2015
- Full Text
- View/download PDF