René Mõttus, Dustin Wood, David M Condon, Mitja Back, Anna Baumert, Giulio Costantini, Sacha Epskamp, Samuel Greiff, Wendy Johnson, Aaron Lukaszewski, Aja Louise Murray, William Revelle, Aidan G.C. Wright, Tal Yarkoni, Matthias Ziegler, Johannes Zimmermann, Psychologische Methodenleer (Psychologie, FMG), Mottus, R, Wood, D, Condon, D, Back, M, Baumert, A, Costantini, G, Epskamp, S, Greiff, S, Johnson, W, Lukaszewski, A, Murray, A, Revelle, W, Wright, A, Yarkoni, T, Ziegler, M, and Zimmermann, J
We argue that it is useful to distinguish between three key goals of personality science—description, prediction and explanation—and that attaining them often requires different priorities and methodological approaches. We put forward specific recommendations such as publishing findings with minimum a priori aggregation and exploring the limits of predictive models without being constrained by parsimony and intuitiveness but instead maximizing out-of-sample predictive accuracy. We argue that naturally occurring variance in many decontextualized and multidetermined constructs that interest personality scientists may not have individual causes, at least as this term is generally understood and in ways that are human-interpretable, never mind intervenable. If so, useful explanations are narratives that summarize many pieces of descriptive findings rather than models that target individual cause–effect associations. By meticulously studying specific and contextualized behaviours, thoughts, feelings and goals, however, individual causes of variance may ultimately be identifiable, although such causal explanations will likely be far more complex, phenomenon-specific and person-specific than anticipated thus far. Progress in all three areas—description, prediction and explanation—requires higher dimensional models than the currently dominant ‘Big Few’ and supplementing subjective trait-ratings with alternative sources of information such as informant-reports and behavioural measurements. Developing a new generation of psychometric tools thus provides many immediate research opportunities. © 2020 European Association of Personality Psychology