Nicole Tandeau de Marsac, Anthony Lepelletier, Anne Marie Castets, Alain Billault, Diego Cortez, Cheng-Cai Zhang, Simonetta Gribaldo, Christiane Bouchier, Yvonne Zilliges, Elke Dittmann, Hans C. P. Matthijs, Philippe Quillardet, Jan-Christoph Kehr, Lionel Frangeul, Sven Becker, Amel Latifi, Andrew C. Tolonen, Jean-François Humbert, Nadine Ziemert, Emmanuel Talla, Génopole, Institut Pasteur [Paris], Centre Alpin de Recherche sur les Réseaux Trophiques et Ecosystèmes Limniques (CARRTEL), Institut National de la Recherche Agronomique (INRA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), VU University Amsterdam, Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Harvard Medical School [Boston] (HMS), Université de la Méditerranée - Aix-Marseille 2, Humboldt University of Berlin, Royal Netherlands Academy of Arts and Sciences (KNAW), Genoscope - Centre national de séquençage [Evry] (GENOSCOPE), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Génomique (Plate-Forme) - Genomics Platform, Institut Pasteur [Paris] (IP), Collection des Cyanobactéries, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Aquatic Microbiology, University of Amsterdam [Amsterdam] (UvA), Department of Genetics [Boston], Laboratoire de chimie bactérienne (LCB), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Molekulare Ökologie, Humboldt University Of Berlin, Centre for Limnology, Netherland Institute for Ecology (NIOO), Vrije Universiteit Amsterdam [Amsterdam] (VU), De Marsac, Nicole Tandeau, Foodweb Studies, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Humboldt-Universität zu Berlin, Vrije universiteit = Free university of Amsterdam [Amsterdam] (VU), Aquatic Microbiology (IBED, FNWI), Génomique (Plate-Forme), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de la Recherche Agronomique (INRA), and Humboldt Universität zu Berlin
Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843). Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.