1. Surrogate modeling: tricks that endured the test of time and some recent developments
- Author
-
Tushar Goel, Felipe A. C. Viana, Christian Gogu, University of Central Florida [Orlando] (UCF), Institut Clément Ader (ICA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
Control and Optimization ,Computer science ,0211 other engineering and technologies ,02 engineering and technology ,Variable screening ,Machine learning ,computer.software_genre ,01 natural sciences ,010104 statistics & probability ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Data sampling ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,sequential sampling ,0101 mathematics ,Sequential sampling ,Uncertainty quantification ,021103 operations research ,business.industry ,Dimensionality reduction ,Design of experiments ,Computer Graphics and Computer-Aided Design ,surrogate modeling ,[SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph] ,Computer Science Applications ,Test (assessment) ,design of experiments ,Control and Systems Engineering ,Artificial intelligence ,Engineering design process ,business ,computer ,Software - Abstract
International audience; Tasks such as analysis, design optimization, and uncertainty quantification can be computationally expensive. Surrogate modeling is often the tool of choice for reducing the burden associated with such data-intensive tasks. However, even after years of intensive research, surrogate modeling still involves a struggle to achieve maximum accuracy within limited resources. This work summarizes various advanced, yet often straightforward, statistical tools that help. We focus on four techniques with increasing popularity in the surrogate modeling community: (i) variable screening and dimensionality reduction in both the input and the output spaces, (ii) data sampling techniques or design of experiments, (iii) simultaneous use of multiple surrogates, and (iv) sequential sampling. We close the paper with some suggestions for future research.
- Published
- 2021