1. Day-time identification of summer hailstorm cells from MSG data
- Author
-
A. Merino, L. López, J. L. Sánchez, E. García-Ortega, E. Cattani, and V. Levizzani
- Abstract
Identifying deep convection is of paramount importance, as it may be associated with extreme weather that has significant impact on the environment, property and the population. A new method, the Hail Detection Tool (HDT), is described for identifying hail-bearing storms using multi-spectral Meteosat Second Generation (MSG) data. HDT was conceived as a two-phase method, in which the first step is the Convective Mask (CM) algorithm devised for detection of deep convection, and the second a Hail Detection algorithm (HD) for the identification of hail-bearing clouds among cumulonimbus systems detected by CM. Both CM and HD are based on logistic regression models trained with multi-spectral MSG data-sets comprised of summer convective events in the middle Ebro Valley between 2006–2010, and detected by the RGB visualization technique (CM) or C-band weather radar system of the University of León. By means of the logistic regression approach, the probability of identifying a cumulonimbus event with CM or a hail event with HD are computed by exploiting a proper selection of MSG wavelengths or their combination. A number of cloud physical properties (liquid water path, optical thickness and effective cloud drop radius) were used to physically interpret results of statistical models from a meteorological perspective, using a method based on these "ingredients." Finally, the HDT was applied to a new validation sample consisting of events during summer 2011. The overall Probability of Detection (POD) was 76.9% and False Alarm Ratio 16.7%.
- Published
- 2013