1. Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier
- Author
-
Ibrahim Omerhodzic, Avdakovic, S., Nuhanovic, A., and Dizdarevic, K.
- Subjects
Classification ,FOS: Computer and information sciences ,Epilepsy ,Quantitative Biology - Neurons and Cognition ,FOS: Biological sciences ,Neural Network ,Computer Science - Neural and Evolutionary Computing ,Wavelet transform ,Neurons and Cognition (q-bio.NC) ,EEG ,Neural and Evolutionary Computing (cs.NE) ,Energydistribution - Abstract
In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently., {"references":["S. Tong and N.V.Thacor, Engineering in Medicine & Biology-\nQuantitative EEG Analysis Methods and Clinical Applications,\nBoston/London: Artech House, 2009.","L. M. Patnaika and O. K. Manyamb, \"Epileptic EEG detection using\nneural networks and post-classification\" Computer methods and\nprograms in biomedicine- Elsevier, vol. 91, pp. 100-109. 2008.","A. Prochazka, J. Kukal and O.Vysata, \"Wavelet transform use for\nfeature extraction and EEG signal segments classification,\" in Proc.\n2008 IEEE Communications, Control and Signal Processing, 3rd\nInternational Symposium, pp. 719 - 722.","V. Bostanov and B. Kotchoubey, \"Recognition of affective prosody:\nContinuous wavelet measures of event-related brain potentials to\nemotional exclamations,\" Psychophysiology, vol. 41, pp. 259-268, 2004.","M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, I. Zunaidi, and D.\nHazry, \"EEG Feature Extraction for Classifying Emotions using FCM\nand FKM,\" Int. Journal of Computers and Comunications, vol. 1, pp.\n21-25, 2007.","C. Wang, J. Zou, J. Zhang, M. Wang and R. Wang, \"Feature extraction\nand recognition of epileptiform activity in EEG by combining PCA with\nApEn\", Biomedical and Life Sciences- Springer, vol. 4, pp. 233-240,\n2010.","L. Guo, D. Rivero, J. A. Seoane and A. Pazos, \"Classification of EEG\nSignals Using Relative Wavelet Energy and Artificial Neural\nNetworks,\" GEC-09, Shanghai, China, 2009.","M. Akin, M. A. Arserim, M. K. Kiymik and I. Turkoglu, \"A New\nApproach For Diagnosing Epilepsy By Using Wavelet Transform And\nNeural Networks,\" in Proc. 2001 IEEE/EMBS 23rd Annual Conference,\npp. 1596 - 1599.","H. S. Liu, T. Zhang and F. S. Yang, \"A Multistage, Multimethod\nApproach for Automatic Detection and Classification of Epileptiform\nEEG,\" IEEE Transactions on Biomedical Engineering, vol. 49, pp. 1557\n- 1566, 2002.\n[10] P. Jahankhani, V. Kodogiannis, and K. Revett, \"EEG Signal\nClassification Using Wavelet Feature Extraction and Neural Networks,\"\nin Proc. 2003 International Symposium on Modern Computing, pp. 120\n- 124.\n[11] A. A. Mashakbeh, \"Analysis Of Electroencephalogram To Detect\nEpilepsy,\" Int. Journal Of Academic Research, vol. 2, pp. 63-69, 2010.\n[12] M. M. Shaker, \"EEG Waves Classifier using Wavelet Transform and\nFourier Transform,\" Int. Journal of Biological and Life Sciences, vol. 1,\npp. 85-90, 2005.\n[13] I. Omerhodzic, E. Causevic, K. Dizdarevic, S. Avdakovic, M. Music, M.\nKusljugic, E. Hajdarpasic, N. Kadic, \"First neurosurgical experience\nwith the wavelet based EEG in diagnostic of concussion,\" 11th Congress\nof Neurosurgeons of Serbia, Nis, Serbia, 2008. Abstract book p. 18.\n[14] L. M. Patnaik, O. K. Manyam, \"Epileptic EEG detection using neural\nnetworks and post-classification\". Comput Methods Programs Biomed.\n2008 Aug;91(2):100-9.\n[15] A. Subasi, E. Er├ºelebi, \"Classification of EEG signals using neural\nnetwork and logistic regression\". Comput Methods Programs Biomed.\n2005 May;78(2):87-99.\n[16] K. Asaduzzaman, M. B. Reaz, F. Mohd-Yasin, K. S. Sim, M. S.\nHussain, \"A study on discrete wavelet-based noise removal from EEG\nsignals\", Adv Exp Med Biol. 2010;680:593-9.\n[17] H. Adeli, Z. Zhou, N. Dadmehr. \"Analysis of EEG records in an\nepileptic patient using wavelet transform\", J Neurosci Methods. 2003\nFeb 15;123(1):69-87.\n[18] L. Guo, D. Rivero, J. Dorado, J. R. Rabunal, A. Pazos, \"Automatic\nepileptic seizure detection in EEGs based on line length feature and\nartificial neural networks\", J Neurosci Methods. 2010 Aug\n15;191(1):101-9.\n[19] A. S. Zandi, M. Javidan, G. A. Dumont, R. Tafreshi, \"Automated realtime\nepileptic seizure detection in scalp EEG recordings using an\nalgorithm based on wavelet packet transform\", IEEE Trans Biomed Eng.\n2010 Jul;57(7):1639-51.\n[20] P. Mirowski, D. Madhavan, Y. Lecun, R. Kuzniecky, Classification of\npatterns of EEG synchronization for seizure prediction. Clin\nNeurophysiol. 2009 Nov;120(11):1927-40.\n[21] A. S. Zandi, G. A. Dumont, M. Javidan, R. Tafreshi, B. A. MacLeod, C.\nR. Ries, E. A. Puil, \"A novel wavelet-based index to detect epileptic\nseizures using scalp EEG signals\", Conf Proc IEEE Eng Med Biol Soc.\n2008;2008:919-22.\n[22] A. Subasi, A. Alkan, E. Koklukaya, M. K. Kiymik, \"Wavelet neural\nnetwork classification of EEG signals by using AR model with MLE\npreprocessing\", Neural Netw. Sep 2005, vol. 18(7), 985-997.\n[23] S. J. Schiff, A. Aldroubi, M. Unser, S. Sato, \"Fast wavelet\ntransformation of EEG\", Electroencephalogr Clin Neurophysiol. Dec\n1994, vol. 91(6), 442-455.\n[24] L. Senhadji, J. L. Dillenseger, F. Wendling, C. Rocha, A. Kinie,\n\"Wavelet analysis of EEG for three-dimensional mapping of epileptic\nevents\", Ann Biomed Eng. Sep-Oct 1995, 23(5):543-52.\n[25] C. E. D'Attellis, S. I. Isaacson, R. O. Sirne, \"Detection of epileptic\nevents in electroencephalograms using wavelet analysis\", Ann Biomed\nEng. Mar-Apr 1997, 25(2):286-93.\n[26] H. Adeli, S. Ghosh-Dastidar, N. Dadmehr, \"A wavelet-chaos\nmethodology for analysis of EEGs and EEG subbands to detect seizure\nand epilepsy\", IEEE Trans Biomed Eng. Feb 2007, 54(2):205-11.\n[27] H. Leung, K. Schindler, A. Y. Chan, A. Y. Lau, K. L. Leung, E. H. Ng,\nK. S. Wong, \"Wavelet-denoising of electroencephalogram and the\nabsolute slope method: a new tool to improve electroencephalographic\nlocalization and lateralization\", Clin Neurophysiol. Jul 2009,\n120(7):1273-81.\n[28] I. Daubechies, Ten Lectures on Wavelets, Philadelphia: Society for\nIndustrial and Applied Mathematics, 1992.\n[29] H. He and J. A. Starzyk, \"A Self-Organizing Learning Array System for\nPower Quality Classification Based on Wavelet Transform,\" IEEE\nTransaction On Power Delivery, vol. 21(1), pp. 286-295, 2006.\n[30] S. Mallat, A Wavelet Tour of Signal Processing, San Diego, CA:\nAcademic, 1998.\n[31] S. Avdakovic and A. Nuhanovic, \"Identifications and Monitoring of\nPower System Dynamics Based on the PMUs and Wavelet Technique,\"\nInternational Journal of Energy and Power Engineering, vol. 3, pp. 202-\n209, 2010.\n[32] R. G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, C. E.\nElger, \"Indications of nonlinear deterministic and finite dimensional\nstructures in time series of brain electrical activity: Dependence on\nrecording region and brain state, Phys. Rev. E, 64, 061907. [Online]\nAvailable: http://epileptologie-bonn.de/cms/\n[33] P. Settipalli, \"Automated Classification Of Power Quality Disturbances\nUsing Signal Processing Technique and Neural Network\", Ph.D.\ndissertation, University of Kentucky; USA, 2007.\n[34] S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial neural\nnetwork classification models: a methodology review, J. Biomed.\nInform. vol. 35, 352-359, 2002.\n[35] I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals,\ncomputing, design, and application, J. Microbiol. Methods vol. 43, 3-31,\n2000.\n[36] B.B. Chaudhuri, U. Bhattacharya, Efficient training and improved\nperformance of multilayer perceptron in pattern classification,\nNeurocomputing vol. 34, 11-27, 2000."]}
- Published
- 2013
- Full Text
- View/download PDF