1. Miniband engineering and topological phase transitions in topological-insulator–normal-insulator superlattices
- Author
-
Badih A. Assaf, G. Krizman, L. A. de Vaulchier, Gunther Springholz, G. Bauer, Yves Guldner, Nano-THz, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Condensed Matter - Materials Science ,Phase transition ,Valence (chemistry) ,Condensed Matter - Mesoscale and Nanoscale Physics ,Superlattice ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Landau quantization ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Topology ,01 natural sciences ,Semimetal ,3. Good health ,Topological insulator ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,010306 general physics ,0210 nano-technology ,Electronic band structure ,Topology (chemistry) - Abstract
Periodic stacking of topologically trivial and non-trivial layers with opposite symmetry of the valence and conduction bands induces topological interface states that, in the strong coupling limit, hybridize both across the topological and normal insulator layers. Using band structure engineering, such superlattices can be effectively realized using the IV-VI lead tin chalcogenides. This leads to emergent minibands with a tunable topology as demonstrated both by theory and experiments. The topological minibands are proven by magneto-optical spectroscopy, revealing Landau level transitions both at the center and edges of the artificial superlattice mini Brillouin zone. Their topological character is identified by the topological phase transitions within the minibands observed as a function of temperature. The critical temperature of this transition as well as the miniband gap and miniband width can be precisely controlled by the layer thicknesses and compositions. This witnesses the generation of a new fully tunable quasi-3D topological state that provides a template for realization of magnetic Weyl semimetals and other strongly interacting topological phases., 21 pages, 8 figures
- Published
- 2021