1. Shallow-water hydrothermalism at Milos (Greece): Nature, distribution, heat fluxes and impact on ecosystems
- Author
-
Anders Schouw, Javier Escartín, Valentine Puzenat, Sven Le Moine Bauer, Othonas Vlasopoulos, Nuno Gracias, Rafael Garcia, Paraskevi N. Polymenakou, Lluís Magí, Manolis Mandalakis, Guillem Vallicrosa, William D. Orsi, Steffen Leth Jørgensen, Varvara Antoniou, Thibaut Barreyre, Jean-Emmanuel Martelat, Ömer K. Coskun, Pascal Allemand, Paraskevi Nomikou, Philippe Grandjean, Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Sciences de la Terre (LST), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Earth Science [Bergen] (UiB), University of Bergen (UiB), National and Kapodistrian University of Athens (NKUA), Universitat de Girona (UdG), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Ludwig-Maximilians-Universität München (LMU), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Universitat de Girona [Girona], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
- Subjects
Shore ,Convection ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Geochemistry ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Geology ,Context (language use) ,010502 geochemistry & geophysics ,Oceanography ,01 natural sciences ,Seafloor spreading ,Hydrothermal circulation ,Waves and shallow water ,13. Climate action ,Geochemistry and Petrology ,Outflow ,14. Life underwater ,Bioturbation ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
Submarine hydrothermal activity is responsible for heat and chemical exchanges through the seafloor. Shallow-water hydrothermal systems (SWHS), while identified around the globe, are often studied in a way that is less comprehensive than their deep-ocean counterparts (e.g., along ridges), where systematic optical and acoustic mapping is more prevalent and coupled to in situ observations and sampling. Using aerial drones, an AUV, and temperature measurements at 10–40 cm subseafloor, we investigated in 2019 one of the most extensive SWHS known to date, in Paleochori and nearby Spathi and Agia Kyriaki Bays (south of Milos, Greece). Hydrothermal venting, found from the shore to water depths of almost 500 m, shows emissions of gases and high-temperature fluids, often associated with bacterial mats and/or hydrothermal mineral precipitates. This study provides extensive drone mapping coupled with local AUV surveys for seafloor characterization and ground-truthing from the shore to ~20 m water depth. Seafloor photomosaics also provide a detailed context to samples, measurements and observations carried in situ. We interpret the photomosaics to define distinct seafloor types, linked to this hydrothermal activity. White hydrothermal patches (WHPs) often show a clear polygonal organization, together with outflow areas that are both more dispersed and distributed. Polygonal patterns likely result from fluid convection in a sandy porous medium heated from below. These WHPs display elevated subseafloor temperatures, typically >50°C, with maximum values of ~75°C. Photomosaics also display textures of biological origin, including seagrass and bioturbation patterns. Widespread bioturbation by burrowing shrimps is often associated with WHPs, bounding them, but also occurs on sandy seafloor away from hydrothermal patterns. Subseafloor temperatures at these bioturbated areas are of ~30–40°C, and are thus transitional between hot WHPs and sedimented seafloor unaffected by hydrothermal activity (~24°C). In addition to linking subseafloor temperature data and interpreted seafloor photomosaics, our results provide a comprehensive general overview of this SWHS, of the organization of its hydrothermal outflow through the seafloor, and of the underlying subseafloor fluid circulation. This paper also gives the first perspectives on the heat fluxes of the system, and constitutes a background for other studies on the nature and distribution of microbial communities, controlled by this hydrothermal activity.
- Published
- 2021
- Full Text
- View/download PDF