12 results on '"Bruno Perret"'
Search Results
2. Relationships between cheese composition, rheological and sensory properties highlighted using the BaGaTel database
- Author
-
Thierry Thomas-Danguin, Hervé Guillemin, Elisabeth Guichard, Bruno Perret, Caroline Pénicaud, Solange Buchin, Christian Salles, Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), Unité de recherches en Technologie et Analyses Laitières (URTAL), AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Paris-Saclay Food and Bioproduct Engineering (SayFood), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), PLASTIC platform, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Qualiment Carnot Institute from French National Research Agency through the NutriSensAl project, France (grant number 16CARN002601) and by French National Research Agency through the DataSusFood project, France., and ANR-19-DATA-0016,DataSusFood,Structurer et Ouvrir les Données pour améliorer la Durabilité des Systèmes Alimentaires(2019)
- Subjects
2. Zero hunger ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Database ,High protein ,media_common.quotation_subject ,0402 animal and dairy science ,Sensory system ,04 agricultural and veterinary sciences ,computer.software_genre ,040401 food science ,040201 dairy & animal science ,Applied Microbiology and Biotechnology ,0404 agricultural biotechnology ,Rheology ,Lipid content ,Perception ,Composition (visual arts) ,Salty taste ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,Water content ,computer ,Food Science ,Mathematics ,media_common - Abstract
International audience; The BaGaTel database, guided by an ontology of dairy gels, has been developed to organise and integrate data on dairy products (process, composition, structure, nutritional, sensory and environmental quality), using a common vocabulary and metadata organisation. BaGaTel was queried to explore relationships between composition, rheological properties and sensory perception in 68 model cheeses from six different projects. Principal component analyses were performed on the total set of 68 samples and on sample subsets. Sensory hardness was well explained by the low moisture-in-non-fat-substances ratio. As expected, salty taste was correlated with salt content but, interestingly, in cheese with a low amount of salt, salty taste was less intense at low water content and was perceived better with increased chewing activity. In cheeses with a high amount of salt, salty test was less intense at high protein content. Salty taste was also influenced by lipid content and correlated with fat perception.
- Published
- 2021
- Full Text
- View/download PDF
3. Computer-Based Fermentation Process Control
- Author
-
Bruno Perret, Eric Latrille, Daniel Picque, and Georges Corrieu
- Subjects
Computer science ,business.industry ,Control (management) ,Computer based ,Fermentation ,Process engineering ,business - Published
- 2018
- Full Text
- View/download PDF
4. Determination of Major Compounds of Alcoholic Fermentation by Middle-Infrared Spectroscopy: Study of Temperature Effects and Calibration Methods
- Author
-
Bruno Perret, Eric Latrille, Philippe Fayolle, Daniel Picque, and Georges Corrieu
- Subjects
Ethanol ,Chromatography ,Chemistry ,010401 analytical chemistry ,Analytical chemistry ,Fructose ,04 agricultural and veterinary sciences ,Ethanol fermentation ,040401 food science ,01 natural sciences ,0104 chemical sciences ,Absorbance ,chemistry.chemical_compound ,0404 agricultural biotechnology ,Glycerol ,Calibration ,Spectroscopy ,Instrumentation ,Quantitative analysis (chemistry) - Abstract
The potential of Fourier transform middle-infrared spectroscopy has been demonstrated for the quantitative analysis of substrates (glucose and fructose) and metabolites (glycerol and ethanol) involved in alcoholic fermentation. Temperature variations between samples and water background reference caused changes in absorbance, and therefore the prediction of concentrations with partial least-squares (PLS) regressions was affected. The same temperatures for the calibration, validation, and prediction sets gave the smallest standard error of prediction (SEP): SEPglucose = 3.9 g L−1; SEPfructose = 4.3 g L−1; SEPglycerol = 0.5 g L−1; SEPethanol = 1.3 g L−1. In order to take different working temperatures (18, 25, and 35 °C) into account, an artificial neural network was used to create a nonlinear multivariate model. Compared to PLS regression, this method provided better results, especially for glycerol and ethanol, where SEP decreased by 0.3 g L−1 and 0.4 g L−1, respectively.
- Published
- 1996
- Full Text
- View/download PDF
5. Yeast concentration estimation and prediction with static and dynamic neural network models in batch cultures
- Author
-
J. M. Barillere, P. Teissier, Eric Latrille, Bruno Perret, Georges Corrieu, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G), and ProdInra, Migration
- Subjects
0106 biological sciences ,[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering ,[SDV]Life Sciences [q-bio] ,Population ,Saccharomyces bayanus ,Bioengineering ,01 natural sciences ,Applied Microbiology and Biotechnology ,03 medical and health sciences ,CULTURE DE CELLULES ,010608 biotechnology ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,education ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,education.field_of_study ,Artificial neural network ,biology ,business.industry ,General Medicine ,[SDV.IDA] Life Sciences [q-bio]/Food engineering ,biology.organism_classification ,Yeast ,Biotechnology ,[SDV] Life Sciences [q-bio] ,Model predictive control ,Recurrent neural network ,DIOXYDE DE CARBONNE ,Fermentation ,Industrial and production engineering ,business ,Biological system - Abstract
The second fermentation is one of the most important steps in Champagne production. For this purpose, yeasts are grown on a wine based medium to adapt their metabolism to ethanol. Several models built with various static and dynamic neural network configurations were investigated. The main objective was to achieve real-time estimation and prediction of yeast concentration during growth. The model selected, based on recurrent neural networks, was first order with respect to the yeast concentration and to the volume of CO2 released. Temperature and pH were included as model parameters as well. Yeast concentration during growth could thus be estimated with an error lower than 3% (±1.7×106 yeasts/ml). From the measurement of initial yeast population and temperature, it was possible to predict the final yeast concentration (after 21 hours of growth) from the beginning of the growth, with about ±3×106 yeasts/ml accuracy. So a predictive control strategy of this process could be investigated.
- Published
- 1996
- Full Text
- View/download PDF
6. Neural network modelling and predictive control of yeast starter production in champagne
- Author
-
Eric Latrille, Georges Corrieu, P. Teissier, Bruno Perret, J. M. Barillere, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G), and ProdInra, Migration
- Subjects
0209 industrial biotechnology ,Engineering ,[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering ,[SDV]Life Sciences [q-bio] ,02 engineering and technology ,CHAMPAGNE ET VIN MOUSSEUX ,020901 industrial engineering & automation ,Starter ,Control theory ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,0202 electrical engineering, electronic engineering, information engineering ,Process control ,Production (economics) ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,ComputingMilieux_MISCELLANEOUS ,Wine ,business.industry ,[SDV.IDA] Life Sciences [q-bio]/Food engineering ,RESEAU DE NEURONES ,Yeast ,[SDV] Life Sciences [q-bio] ,Model predictive control ,Recurrent neural network ,020201 artificial intelligence & image processing ,Fermentation ,business ,Biological system - Abstract
The second fermentation is one of the most important steps in Champagne production. For this purpose, yeasts are grown on a wine based medium to adapt their metabolism to ethanol. A recurrent neural network combined with a stoichiometric reaction scheme were identified as a state model of yeast growth fermentation process. This model was used to perform an open-loop or a closed-loop control of the final yeast concentration (after a fermentation time of 21 hours) following a predictive mode control. Industrial application of the control let to a 4% error between the desired and the measured final yeast concentration. This was good enough to guaranty a constant production of yeast with an efficient physiological state.
- Published
- 1997
- Full Text
- View/download PDF
7. Comparison of Partial Least Squares Algorithm and Artificial Neural Networks for the Prediction of the Concentration of Molecules Involved in Alcoholic Fermentation with Mid Infra-Red Spectroscopy
- Author
-
Bruno Perret, Daniel Picque, Philippe Fayolle, and Georges Corrieu
- Subjects
Flow injection analysis ,symbols.namesake ,Multivariate statistics ,Fourier transform ,Chemistry ,Partial least squares regression ,symbols ,Principal component regression ,Gas chromatography ,High-performance liquid chromatography ,Quantitative analysis (chemistry) ,Algorithm - Abstract
The potential of the Fourier Transform Infra-Red (FT-IR) spectroscopy was demonstrated for the quantitative analysis of biological molecules. But, the complexity of spectra obtained from fermentation media required the use of multivariate methods for the quantitative analysis. For the analysis of compounds, the classic laboratory technics such as flow injection analysis, gas chromatography, high performance liquid chromatography are tedious and need samples preparations (centrifugation, filtration, precipitation, dilution, etc.). But, for several years, FT-IR spectroscopy is well known to realize fast (some seconds for a spectrum with a high signal-to-noise ratio) and accurate analysis of many biological [1] and fermentation media [2]. For the quantitative analysis of this complex multi-component media, many chemometrical technics [3] are used such as multilinear regression (MLR), principal component regression (PCR), partial least squares (PLS). Among all this multivariate technics, PLS algorithm give the best results [4]. Recently, the artificial neural networks (ANN) had a great expansion. For instance, Bhandare et al. [5] showed that ANN could improve the prediction of glucose in whole blood when the relationship between spectral data and concentrations of this compound became nonlinear. The nonlinear phenomenons can be of several orders such as the response of the detector, the multiple scattering of the IR light in the sample, the temperature and the composition of the sample, etc... The goal of this study is to compare the prediction of the concentration of compounds involved in alcoholic fermentation with PLS algorithm and ANN.
- Published
- 1995
- Full Text
- View/download PDF
8. Analyse environnementale de procédés bio-industriels
- Author
-
Caroline Pénicaud, Thibaut Maury, Stéphanie Passot, Bruno Perret, Fernanda Fonseca, Génie et Microbiologie des Procédés Alimentaires (GMPA), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
procédés bio-industriels ,Analyse environnementale ,[SDV]Life Sciences [q-bio] - Abstract
Analyse environnementale de procédés bio-industriels. SFGP2013 - XIV. Congrès de la Société Française de Génie des Procédés
9. Florilège: a database gathering microbial phenotypes of food interest
- Author
-
Hélène Falentin, Estelle Chaix, Bedis Dridi, Philippe Bessieres, Buchin, S., Stéphanie-Marie Deutsch, Magalie Weber, Robert Bossy, Sandra Derozier, Bruno Perret, Sophie Aubin, Louise Deleger, Juliette Dibie-Barthelemy, Céline Delbes, Francoise Irlinger, Florence Valence-Bertel, Serge Casaregola, Anne Thierry, Monique Zagorec, Marie-Christine Champomier-Verges, Mouamadou Ba, Arnaud Ferré, Pierre Renault, Valentin Loux, Claire Nédellec, Delphine Sicard, Science et Technologie du Lait et de l'Oeuf (STLO), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (MaIAGE), Institut National de la Recherche Agronomique (INRA), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Unité de recherches en Technologie et Analyses Laitières (URTAL), AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA), Unité de recherche sur les Biopolymères, Interactions Assemblages (BIA), Génie et Microbiologie des Procédés Alimentaires (GMPA), DIST Délégation Information Scientifique et Technique (DV-IST), Mathématiques et Informatique Appliquées (MIA-Paris), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche Fromagère (UMRF), UMR 1014 SECurité des ALIments et Microbiologie, Institut National de la Recherche Agronomique (INRA)-Département Microbiologie et Chaîne Alimentaire (MICA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS)-SECurité des ALIments et Microbiologie (SECALIM), Sciences Pour l'Oenologie (SPO), Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD [Nouvelle-Calédonie])-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD [Nouvelle-Calédonie])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut National de la Recherche Agronomique (INRA)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Unité Mixte de Recherche sur le Fromage (UMRF), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université Montpellier 1 (UM1)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA), Métaprogramme MEM, SECurité des ALIments et Microbiologie, Institut National de la Recherche Agronomique (INRA)-École nationale d'ingénieurs des techniques des industries agricoles et alimentaires (ENITIAA)-École nationale vétérinaire, agroalimentaire et de l'alimentation Nantes-Atlantique (ONIRIS), and Université Montpellier 1 (UM1)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
- Subjects
consortia bactériens ,taxonomie ,biodiversité bactérienne ,fermented foods ,produit laitier ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,alimentation durable ,taxonomie bactérienne ,biopréservation ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,bioconservation ,collection de souches ,database ,phénotypr ,communauté microbienne ,bactérie d'intérêt alimentaire ,text-mining ,aliment fermenté ,ferment ,communauté bactérienne ,extraction d'information ,phénotype ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,dairy product ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,souche de levure ,bactérie alimentaire ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,souche de bactérie - Abstract
Food fermentation and biopreservation processes involve the use of various species and strains of bacteria and yeast. These strains are responsible for the targeted qualities of the food products that are sanitary, organoleptic (aroma and texture) and healthy qualities. The Florilege database project aims at (i) gathering bacterial and yeast phenotypes of food product of interest that are automatically extracted from PubMed-referenced full-text litterature by using a text mining approach (ii) managing the information in a relational database (iii) enabling multi-criteria requests via a Web user-friendly interface. To date 368 phenotypes, 260 synthetised or degraded molecules, 1076 medium or food products, 1181 bacterial taxons have been acquired by a combinaison of automatic and manual annotations of text, used for training the text-mining method.Food products are automatically categorized in Florilege according to the OntoBiotope ontology that we have extended with dairy and bakery products definitions. Taxa are categorized by the NCBI taxonomy. An ontology of microbial characteristics has been specifically enriched by the Florilege project. This ontology defines microbial phenotypes (Ontobiotope-Phenotype), including intracellular characteristics of cells (such as shape, antibiotic resistance...) and microbial uses (Ontobiotope-Use) that express the microbial alteration of the external environment, food or matrix, such as aroma, vitamin or other molecule production, degradation or food coloring.A preliminary Web interface is available for querying taxa, culture medium and food products at http://genome.jouy.inra.fr/Florilege/. The public availability of Florilege database is planned for the end of 2017 with a user-friendly interface for multi-criteria requests and access to various phenotypes.Florilege will be a highly valuable tool to (i) assess phenotypic biodiversity of food microbes (ii) assign biochemical functions to each strain/species from fermented or biopreserved food products (iii) help into the development of innovative food products in particular those that involve fermentation or biopreservation processes.
10. Methodological approach towards environmentally friendly processes for preserving lactic acid bacteria
- Author
-
Caroline Pénicaud, Bruno Perret, Stéphanie Passot, Camille Quentier, Fernanda Fonseca, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, AgroParisTech-Institut National de la Recherche Agronomique (INRA), and Université Paris Saclay (COmUE)
- Subjects
lactic acid bacteria ,Methodological approach ,[SDV]Life Sciences [q-bio] ,environmentally friendly processes for preserving - Abstract
Methodological approach towards environmentally friendly processes for preserving lactic acid bacteria. CBL 2019 - 22. Colloque du Club des Bactéries Lactiques
11. CAFE Deliverable 2.2
- Author
-
Pascal Neveu, Alexandre Granier, Nicole Koenderink, Eric Latrille, Bruno Perret, Virginie Rossard, Anne Tireau, Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA), Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, auto-saisine, Absent, Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
[SDV]Life Sciences [q-bio] - Abstract
absent
12. Insights into freeze-drying energy consumptions for an environmentally-reasoned process control (poster)
- Author
-
Caroline Pénicaud, Ioan Cristian Tréléa, Bruno Perret, Fernanda Fonseca, Violaine Athes, Stéphanie Passot, Génie et Microbiologie des Procédés Alimentaires (GMPA), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
freeze-drying energy consumptions ,environmentally-reasoned process control ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; no abstract
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.