1. Engineering Co$_2$MnAl$_x$Si$_{1-x}$ Heusler compounds as a model system to correlate spin polarization, intrinsic Gilbert damping and ultrafast demagnetization
- Author
-
Guillemard, C., Zhang, W., Malinowski, G., de Melo, C., Gorchon, J., Petit-Watelot, S., Ghanbaja, J., Mangin, S., Fèvre, P. Le, Bertran, F., and Andrieu, S.
- Subjects
Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
Engineering of magnetic materials for developing better spintronic applications relies on the control of two key parameters: the spin polarization and the Gilbert damping responsible for the spin angular momentum dissipation. Both of them are expected to affect the ultrafast magnetization dynamics occurring on the femtosecond time scale. Here, we use engineered Co2MnAlxSi1-x Heusler compounds to adjust the degree of spin polarization P from 60 to 100% and investigate how it correlates with the damping. We demonstrate experimentally that the damping decreases when increasing the spin polarization from 1.1 10-3 for Co2MnAl with 63% spin polarization to an ultra-low value of 4.10-4 for the half-metal magnet Co2MnSi. This allows us investigating the relation between these two parameters and the ultrafast demagnetization time characterizing the loss of magnetization occurring after femtosecond laser pulse excitation. The demagnetization time is observed to be inversely proportional to 1-P and as a consequence to the magnetic damping, which can be attributed to the similarity of the spin angular momentum dissipation processes responsible for these two effects. Altogether, our high quality Heusler compounds allow controlling the band structure and therefore the channel for spin angular momentum dissipation.
- Published
- 2020
- Full Text
- View/download PDF