1. Plasma-wall interaction studies within the EUROfusion consortium
- Author
-
Brezinsek, S., Coenen, J. W., Schwarz-Selinger, T., Schmid, K., Kirschner, A., Hakola, A., Tabares, F. L., Meiden, H. J., Mayoral, M. L., Reinhart, M., Tsitrone, E., Ahlgren, T., Aints, M., Airila, M., Almaviva, S., Alves, E., Angot, T., Anita, V., Arredondo Parra, R., Aumayr, F., Balden, M., Bauer, J., Ben Yaala, M., Berger, B. M., Bisson, R., Björkas, C., Bogdanovic Radovic, I., Borodin, D., Bucalossi, J., Butikova, J., Butoi, B., Čadež, I., Caniello, R., Caneve, L., Cartry, G., Catarino, N., Čekada, M., Ciraolo, G., Ciupinski, L., Colao, F., Corre, Y., Costin, C., Craciunescu, T., Cremona, A., Angeli, M., Castro, A., Dejarnac, R., Dellasega, D., Dinca, P., Dittmar, T., Dobrea, C., Hansen, P., Drenik, A., Eich, T., Elgeti, S., Falie, D., Fedorczak, N., Ferro, Y., Fornal, T., Fortuna-Zalesna, E., Gao, L., Gasior, P., Gherendi, M., Ghezzi, F., Gosar, Greuner, H., Grigore, E., Grisolia, C., Groth, M., Gruca, M., Grzonka, J., Gunn, J. P., Hassouni, K., Heinola, K., Höschen, T., Huber, S., Jacob, W., Jepu, I., Jiang, X., Jogi, I., Kaiser, A., Karhunen, J., Kelemen, M., Köppen, M., Koslowski, H. R., Kreter, A., Kubkowska, M., Laan, M., Laguardia, L., Lahtinen, A., Lasa, A., Lazic, V., Lemahieu, N., Likonen, J., Linke, J., Litnovsky, A., Linsmeier, Ch, Loewenhoff, T., Lungu, C., Lungu, M., Maddaluno, G., Maier, H., Makkonen, T., Manhard, A., Marandet, Y., Markelj, S., Marot, L., Martin Oberkofler, Martin-Rojo, A. B., Martynova, Y., Mateus, R., Matveev, D., Mayer, M., Meisl, G., Mellet, N., Michau, A., Miettunen, J., Möller, S., Morgan, T. W., Mougenot, J., Mozetič, M., Nemanič, V., Neu, R., Nordlund, K., Oberkofler, M., Oyarzabal, E., Panjan, M., Pardanaud, C., Paris, P., Passoni, M., Pegourie, B., Pelicon, P., Petersson, P., Piip, K., Pintsuk, G., Pompilian, G. O., Popa, G., Porosnicu, C., Primc, G., Probst, M., Räisänen, J., Rasinski, M., Ratynskaia, S., Reiser, D., Ricci, D., Richou, M., Riesch, J., Riva, G., Rosinski, M., Roubin, P., Rubel, M., Ruset, C., Safi, E., Sergienko, G., Siketic, Z., Sima, A., Spilker, B., Stadlmayr, R., Steudel, I., Ström, P., Tadic, T., Tafalla, D., Tale, I., Terentyev, D., Terra, A., Tiron, V., Tiseanu, I., Tolias, P., Tskhakaya, D., Uccello, A., Unterberg, B., Uytdenhoven, I., Vassallo, E., Vavpetič, P., Veis, P., Velicu, I. L., Vernimmen, J. W. M., Voitkans, A., Toussaint, U., Weckmann, A., Wirtz, M., Založnik, A., Zaplotnik, R., Jülich Research Centre, Max Planck Institute for Plasma Physics, VTT Technical Research Centre of Finland, CIEMAT, Dutch Institute for Fundamental Energy Research, Culham Science Centre, CEA, University of Helsinki, University of Tartu, Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile, Instituto Superior Tecnico Lisboa, CNRS, Al. I. Cuza University, Vienna University of Technology, Swiss Federal Institute of Technology Lausanne, Ruder Boskovic Institute, University of Latvia, National Institute for Laser, Plasma and Radiation Physics, J. Stefan Institute, National Research Council of Italy, Warsaw University of Technology, Czech Academy of Sciences, Polytechnic University of Milan, Soltan Institute for Nuclear Studies, Department of Applied Physics, University of Innsbruck, KTH Royal Institute of Technology, Belgian Nuclear Research Centre, Comenius University in Bratislava, Aalto-yliopisto, and Aalto University
- Subjects
power exhaust ,tungsten ,particle exhaust ,plasma-facing components ,beryllium ,plasma-surface interaction - Abstract
The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.