1,768 results on '"ASTROPARTICLE PHYSICS"'
Search Results
2. Cosmological simulations with rare and frequent dark matter self-interactions
- Author
-
Moritz S Fischer, Marcus Brüggen, Kai Schmidt-Hoberg, Klaus Dolag, Felix Kahlhoefer, Antonio Ragagnin, and Andrew Robertson
- Subjects
cosmological model ,matter: power spectrum ,dark matter: interaction ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,scattering [dark matter] ,satellite ,scattering, small-angle ,FOS: Physical sciences ,dark matter: density ,dark matter ,matter, power spectrum ,methods: numerical ,halo: density ,High Energy Physics - Phenomenology (hep-ph) ,dark matter: halo ,density [halo] ,correlation function ,numerical calculations ,dark matter, scattering ,halo, density ,dark matter, halo ,density [dark matter] ,two-point function ,halo [dark matter] ,numerical [methods] ,Astronomy and Astrophysics ,suppression ,Astrophysics - Astrophysics of Galaxies ,scattering: small-angle ,galaxies: haloes ,dark matter: scattering ,power spectrum [matter] ,haloes [galaxies] ,High Energy Physics - Phenomenology ,wide-angle ,astroparticle physics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,small-angle [scattering] ,ddc:520 ,interaction [dark matter] ,self-force ,dark matter, density ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Monthly notices of the Royal Astronomical Society 516(2), 1923 - 1940 (2022). doi:10.1093/mnras/stac2207, Dark matter (DM) with self-interactions is a promising solution for the small-scale problems of the standard cosmological model. Here we perform the first cosmological simulation of frequent DM self-interactions, corresponding to small-angle DM scatterings. The focus of our analysis lies in finding and understanding differences to the traditionally assumed rare DM (large-angle) self-scatterings. For this purpose, we compute the distribution of DM densities, the matter power spectrum, the two-point correlation function, and the halo and subhalo mass functions. Furthermore, we investigate the density profiles of the DM haloes and their shapes. We find that overall large-angle and small-angle scatterings behave fairly similarly with a few exceptions. In particular, the number of satellites is considerably suppressed for frequent compared to rare self-interactions with the same cross-section. Overall, we observe that while differences between the two cases may be difficult to establish using a single measure, the degeneracy may be broken through a combination of multiple ones. For instance, the combination of satellite counts with halo density or shape profiles could allow discriminating between rare and frequent self-interactions. As a by-product of our analysis, we provide – for the first time – upper limits on the cross-section for frequent self-interactions., Published by Oxford Univ. Press, Oxford
- Published
- 2022
- Full Text
- View/download PDF
3. Open data and open-source tools throughout research data life cycle: KCDC example
- Author
-
V. Tokareva
- Subjects
FAIR data ,cosmic rays ,astroparticle physics ,KCDC ,open data ,research data management ,data life cycle ,outreach ,data center ,PUNCH4NFDI - Abstract
Open science essentials include open data, open source software, open access materials, open educational resources, etc. They provide substantial benefits to society like reproducibility of research, increased transparency and public acceptance of studies, simplified publication process, and enhanced public education. Ultimately, new opportunities become available for unique interdisciplinary studies performed by large diverse teams of specialists on publicly available datasets. Established in 2013, the KASCADE Cosmic Ray Data Centre (KCDC) exists simultaneously as an open archive for data of high-energy astroparticle physics experiments (such as KASCADE, KASCADE-Grande, LOPES, Maket-Ani, etc.), open source software and a web portal providing access to open educational resources. KCDC allows data selection with custom user data cuts using GUI or REST API and interactive online analysis of the selected data with integrated Jupyter Notebooks. From this talk, one can learn more about KCDC's functionality and get better understanding of open science and research data life cycle concepts. An example of machine learning based analysis employing the KCDC platform and deployment of the results as an application using Streamlit will be discussed. This work is partially supported by the DFG fund ``NFDI 39/1" for the PUNCH4NFDI consortium., V. Tokareva for KCDC Team
- Published
- 2023
- Full Text
- View/download PDF
4. Cosmic-ray generated bubbles around their sources
- Author
-
Colby Haggerty, Pasquale Blasi, Benedikt Schroer, Damiano Caprioli, and Oreste Pezzi
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,cosmic rays ,astroparticle physics ,instabilities ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,turbulence ,FOS: Physical sciences ,Astronomy and Astrophysics ,ISM: magnetic fields ,Astrophysics - High Energy Astrophysical Phenomena ,ISM: supernova remnants - Abstract
Cosmic rays are thought to escape their sources streaming along the local magnetic field lines. We show that this phenomenon generally leads to the excitation of both resonant and non-resonant streaming instabilities. The self-generated magnetic fluctuations induce particle diffusion in extended regions around the source, so that cosmic rays build up a large pressure gradient. By means of two-dimensional (2D) and three-dimensional (3D) hybrid particle-in-cell simulations, we show that such a pressure gradient excavates a cavity around the source and leads to the formation of a cosmic-ray dominated bubble, inside which diffusivity is strongly suppressed. Based on the trends extracted from self-consistent simulations, we estimate that, in the absence of severe damping of the self-generated magnetic fields, the bubble should keep expanding until pressure balance with the surrounding medium is reached, corresponding to a radius of $\sim 10-50$ pc. The implications of the formation of these regions of low diffusivity for sources of Galactic cosmic rays are discussed. Special care is devoted to estimating the self-generated diffusion coefficient and the grammage that cosmic rays might accumulate in the bubbles before moving into the interstellar medium. Based on the results of 3D simulations, general considerations on the morphology of the $\gamma$-ray and synchrotron emission from these extended regions also are outlined., Comment: 12 pages, accepted for publication in MNRAS
- Published
- 2022
5. Event-by-event reconstruction of the shower maximum Xmax with the Surface Detector of the Pierre Auger Observatory using deep learning
- Author
-
Glombitza, J., Abreu, P., Aglietta, M., Albury, J. M., Allekotte, I., Almela, A., Alvarez-Muniz, J., Alves Batista, R., Anastasi, G. A., Anchordoqui, L., Andrada, B., Andringa, S., Aramo, C., Araujo Ferreira, P. R., Arteaga Velazquez, J. C., Asorey, H., Assis, P., Avila, G., Badescu, A. M., Bakalova, A., Balaceanu, A., Barbato, F., Barreira Luz, R. J., Becker, K. H., Bellido, J. A., Berat, C., Bertaina, M. E., Bertou, X., Biermann, P. L., Binet, V., Bismark, K., Bister, T., Biteau, J., Blazek, J., Bleve, C., Bohacova, M., Boncioli, D., Bonifazi, C., Bonneau Arbeletche, L., Borodai, N., Botti, A. M., Brack, J., Bretz, T., Brichetto Orchera, P. G., Briechle, F. L., Buchholz, P., Bueno, A., Buitink, S., Buscemi, M., Busken, M., Caballero-Mora, K. S., Caccianiga, L., Canfora, F., Caracas, I., Carceller, J. M., Caruso, R., Castellina, A., Catalani, F., Cataldi, G., Cazon, L., Cerda, M., Chinellato, J. A., Chudoba, J., Chytka, L., Clay, R. W., Cobos Cerutti, A. C., Colalillo, R., Coleman, A., Coluccia, M. R., Conceicao, R., Condorelli, A., Consolati, G., Contreras, F., Convenga, F., Correia dos Santos, D., Covault, C. E., Dasso, S., Daumiller, K., Dawson, B. R., Day, J. A., de Almeida, R. M., de Jesus, J., de Jong, S. J., De Mauro, G., de Mello Neto, J. R. T., De Mitri, I., de Oliveira, J., de Oliveira Franco, D., de Palma, F., de Souza, V., De Vito, E., del Rio, M., Deligny, O., Deval, L., di Matteo, A., Dobrigkeit, C., D'Olivo, J. C., Domingues Mendes, L. M., dos Anjos, R. C., dos Santos, D., Dova, M. T., Ebr, J., Engel, R., Epicoco, I., Erdmann, M., Escobar, C. O., Etchegoyen, A., Falcke, H., Farmer, J., Farrar, G., Fauth, A. C., Fazzini, N., Feldbusch, F., Fenu, F., Fick, B., Figueira, J. M., Filipcic, A., Fitoussi, T., Fodran, T., Freire, M. M., Fujii, T., Fuster, A., Galea, C., Galelli, C., Garcia, B., Garcia Vegas, A. L., Gemmeke, H., Gesualdi, F., Gherghel-Lascu, A., Ghia, P. L., Giaccari, U., Giammarchi, M., Gobbi, F., Gollan, F., Golup, G., Gomez Berisso, M., Gomez Vitale, P. F., Gongora, J. P., Gonzalez, J. M., Gonzalez, N., Goos, I., Gora, D., Gorgi, A., Gottowik, M., Grubb, T. D., Guarino, F., Guedes, G. P., Guido, E., Hahn, S., Hamal, P., Hampel, M. R., Hansen, P., Harari, D., Harvey, V. M., Haungs, A., Hebbeker, T., Heck, D., Hill, G. C., Hojvat, C., Horandel, J. R., Horvath, P., Hrabovsky, M., Huege, T., Insolia, A., Isar, P. G., Janecek, P., Johnsen, J. A., Jurysek, J., Kaapa, A., Kampert, K. H., Karastathis, N., Keilhauer, B., Kemp, J., Khakurdikar, A., Kizakke Covilakam, V. V., Klages, H. O., Kleifges, M., Kleinfeller, J., Kopke, M., Kunka, N., Lago, B. L., Lang, R. G., Langner, N., Leigui de Oliveira, M. A., Lenok, V., Letessier-Selvon, A., Lhenry-Yvon, I., Lo Presti, D., Lopes, L., Lopez, R., Lu, L., Luce, Q., Lundquist, J. P., Machado Payeras, A., Mancarella, G., Mandat, D., Manning, B. C., Manshanden, J., Mantsch, P., Marafico, S., Mariazzi, A. G., Maris, I. C., Marsella, G., Martello, D., Martinelli, S., Martinez Bravo, O., Mastrodicasa, M., Mathes, H. J., Matthews, J., Matthiae, G., Mayotte, E., Mazur, P. O., Medina-Tanco, G., Melo, D., Menshikov, A., Merenda, K. -D., Michal, S., Micheletti, M. I., Miramonti, L., Mollerach, S., Montanet, F., Morello, C., Mostafa, M., Muller, A. L., Muller, M. A., Mulrey, K., Mussa, R., Muzio, M., Namasaka, W. M., Nasr-Esfahani, A., Nellen, L., Niculescu-Oglinzanu, M., Niechciol, M., Nitz, D., Nosek, D., Novotny, V., Nozka, L., Nucita, A., Nunez, L. A., Palatka, M., Pallotta, J., Papenbreer, P., Parente, G., Parra, A., Pawlowsky, J., Pech, M., Pedreira, F., Pekala, J., Pelayo, R., Pena-Rodriguez, J., Pereira Martins, E. E., Perez Armand, J., Perez Bertolli, C., Perlin, M., Perrone, L., Petrera, S., Pierog, T., Pimenta, M., Pirronello, V., Platino, M., Pont, B., Pothast, M., Privitera, P., Prouza, M., Puyleart, A., Querchfeld, S., Rautenberg, J., Ravignani, D., Reininghaus, M., Ridky, J., Riehn, F., Risse, M., Rizi, V., Rodrigues de Carvalho, W., Rodriguez Rojo, J., Roncoroni, M. J., Rossoni, S., Roth, M., Roulet, E., Rovero, A. C., Ruehl, P., Saftoiu, A., Salamida, F., Salazar, H., Salina, G., Sanabria Gomez, J. D., Sanchez, F., Santos, E. M., Santos, E., Sarazin, F., Sarmento, R., Sarmiento-Cano, C., Sato, R., Savina, P., Schafer, C. M., Scherini, V., Schieler, H., Schimassek, M., Schimp, M., Schluter, F., Schmidt, D., Scholten, O., Schovanek, P., Schroder, F. G., Schroder, S., Schulte, J., Sciutto, S. J., Scornavacche, M., Segreto, A., Sehgal, S., Shellard, R. C., Sigl, G., Silli, G., Sima, O., Smida, R., Sommers, P., Soriano, J. F., Souchard, J., Squartini, R., Stadelmaier, M., Stanca, D., Stanic, S., Stasielak, J., Stassi, P., Streich, A., Suarez-Duran, M., Sudholz, T., Suomijarvi, T., Supanitsky, A. D., Szadkowski, Z., Tapia, A., Taricco, C., Timmermans, C., Tkachenko, O., Tobiska, P., Todero Peixoto, C. J., Tome, B., Torres, Z., Travaini, A., Travnicek, P., Trimarelli, C., Tueros, M., Ulrich, R., Unger, M., Vaclavek, L., Vacula, M., Valdes Galicia, J. F., Valore, L., Varela, E., Vasquez-Ramirez, A., Veberic, D., Ventura, C., Vergara Quispe, I. D., Verzi, V., Vicha, J., Vink, J., Vorobiov, S., Wahlberg, H., Watanabe, C., Watson, A. A., Weber, M., Weindl, A., Wiencke, L., Wilczynski, H., Wirtz, M., Wittkowski, D., Wundheiler, B., Yushkov, A., Zapparrata, O., Zas, E., Zavrtanik, D., Zavrtanik, M., and Zehrer, L.
- Subjects
Pierre Auger Observatory ,Astroparticle physics ,Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Auger ,Nuclear physics ,Experimental High Energy Physics ,ddc:530 ,High Energy Physics ,Event (particle physics) ,Energy (signal processing) ,Event reconstruction - Abstract
The measurement of the mass composition of ultra-high energy cosmic rays constitutes a prime challenge in astroparticle physics. Most detailed information on the composition can be obtained from measurements of the depth of maximum of air showers, $X_{\mathrm{max}}$, with the use of fluorescence telescopes, which can be operated only during clear and moonless nights. Using deep neural networks, it is now possible for the first time to perform an event-by-event reconstruction of $X_{\mathrm{max}}$ with the Surface Detector (SD) of the Pierre Auger Observatory. Therefore, previously recorded data can be analyzed for information on $X_{\mathrm{max}}$, and thus, the cosmic-ray composition. Since the SD operates with a duty cycle of almost $100\%$ and its event selection is less strict than for the Fluorescence Detector (FD), the gain in statistics with respect to the FD is almost a factor of 15 for energies above $10^{19.5}~\mathrm{eV}$. In this contribution, we introduce the neural network particularly designed for the SD of the Pierre Auger Observatory. We evaluate its performance using three different hadronic interaction models, verify its functionality using Auger hybrid measurements, and find that the method can extract mass information on an event level.
- Published
- 2022
6. The Forward Physics Facility at the High-Luminosity LHC
- Author
-
Feng, JL, Kling, F, Reno, MH, Rojo, J, Soldin, D, Anchordoqui, LA, Boyd, J, Ismail, A, Harland-Lang, L, Kelly, KJ, Pandey, V, Trojanowski, S, Tsai, YD, Alameddine, JM, Araki, T, Ariga, A, Ariga, T, Asai, K, Bacchetta, A, Balazs, K, Barr, AJ, Battistin, M, Bian, J, Bertone, C, Bai, W, Bakhti, P, Baha Balantekin, A, Barman, B, Batell, B, Bauer, M, Bauer, B, Becker, M, Berlin, A, Bertuzzo, E, Bhattacharya, A, Bonvini, M, Boogert, ST, Boyarsky, A, Bramante, J, Brdar, V, Carmona, A, Casper, DW, Celiberto, FG, Cerutti, F, Chachamis, G, Chauhan, G, Citron, M, Copello, E, Corso, JP, Darmé, L, D'Agnolo, RT, Darvishi, N, Das, A, De Lellis, G, De Roeck, A, De Vries, J, Dembinski, HP, Demidov, S, Deniverville, P, Denton, PB, Deppisch, FF, Bhupal Dev, PS, Di Crescenzo, A, Dienes, KR, Diwan, MV, Dreiner, HK, Du, Y, Dutta, B, Duwentäster, P, Elie, L, Ellis, SAR, Enberg, R, Farzan, Y, Fieg, M, Foguel, AL, Foldenauer, P, Foroughi-Abari, S, Fortin, JF, Friedland, A, Fuchs, E, Fucilla, M, Gallmeister, K, Garcia, A, Canal, CAG, Garzelli, MV, Gauld, R, Ghosh, S, Ghoshal, A, Gibson, S, Giuli, F, Gonçalves, VP, Gorbunov, D, Goswami, S, Grau, S, Günther, JY, Guzzi, M, Haas, A, Hakulinen, T, Harris, SP, Harz, J, Feng, JL [0000-0002-7713-2138], Kling, F [0000-0002-3100-6144], Reno, MH [0000-0001-6264-3990], Rojo, J [0000-0003-4279-2192], Soldin, D [0000-0003-3005-7879], Demidov, S [0000-0002-0769-7731], Gorbunov, D [0000-0003-1424-683X], and Apollo - University of Cambridge Repository
- Subjects
Particle physics ,Molecular ,neutrinos ,Atomic ,Nuclear & Particles Physics ,QCD ,dark matter ,Particle and Plasma Physics ,Large Hadron Collider ,astroparticle physics ,Major Report ,Nuclear ,new particle searches ,Forward Physics Facility - Abstract
High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.
- Published
- 2023
- Full Text
- View/download PDF
7. A next-generation liquid xenon observatory for dark matter and neutrino physics
- Author
-
Aalbers, J, Abe, K, Aerne, V, Agostini, F, Maouloud, S Ahmed, Akerib, DS, Akimov, D Yu, Akshat, J, Musalhi, AK Al, Alder, F, Alsum, SK, Althueser, L, Amarasinghe, CS, Amaro, FD, Ames, A, Anderson, TJ, Andrieu, B, Angelides, N, Angelino, E, Angevaare, J, Antochi, VC, Martin, D Antón, Antunovic, B, Aprile, E, Araújo, HM, Armstrong, JE, Arneodo, F, Arthurs, M, Asadi, P, Baek, S, Bai, X, Bajpai, D, Baker, A, Balajthy, J, Balashov, S, Balzer, M, Bandyopadhyay, A, Bang, J, Barberio, E, Bargemann, JW, Baudis, L, Bauer, D, Baur, D, Baxter, A, Baxter, AL, Bazyk, M, Beattie, K, Behrens, J, Bell, NF, Bellagamba, L, Beltrame, P, Benabderrahmane, M, Bernard, EP, Bertone, GF, Bhattacharjee, P, Bhatti, A, Biekert, A, Biesiadzinski, TP, Binau, AR, Biondi, R, Biondi, Y, Birch, HJ, Bishara, F, Bismark, A, Blanco, C, Blockinger, GM, Bodnia, E, Boehm, C, Bolozdynya, AI, Bolton, PD, Bottaro, S, Bourgeois, C, Boxer, B, Brás, P, Breskin, A, Breur, PA, Brew, CAJ, Brod, J, Brookes, E, Brown, A, Brown, E, Bruenner, S, Bruno, G, Budnik, R, Bui, TK, Burdin, S, Buse, S, Busenitz, JK, Buttazzo, D, Buuck, M, Buzulutskov, A, Cabrita, R, Cai, C, Cai, D, Capelli, C, Cardoso, JMR, Carmona-Benitez, MC, Cascella, M, Catena, R, Chakraborty, S, Lang, RF [0000-0001-7594-2746], and Apollo - University of Cambridge Repository
- Subjects
neutrinoless double-beta decay ,hep-ex ,astroparticle physics ,supernova ,astro-ph.CO ,neutrinos ,direct detection ,nucl-ex ,physics.ins-det ,dark matter ,xenon - Abstract
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.
- Published
- 2023
8. Making sense of recent results on electrons and positrons from cosmic ray experiments
- Author
-
Evoli, Carmelo
- Subjects
cosmic rays ,astroparticle physics ,cosmic antimatter - Abstract
Slides of the talk I gave at the 'Cosmic Rays in the Multi-Messenger Era' conference 2022: https://indico.in2p3.fr/event/27666/timetable/
- Published
- 2022
- Full Text
- View/download PDF
9. Phenomenology and theory of Galactic cosmic-ray propagation
- Author
-
Carmelo, Evoli
- Subjects
cosmic rays ,astroparticle physics - Abstract
Slides of the remote talk I gave as an Astroplasmas Seminar at Princeton (US): https://sites.google.com/site/astroplasmasgroup/, {"references":["Evoli et al., Physical Review D, Volume 103, Issue 8, article id.083010 (2021)","Evoli et al., Physical Review Letters, Volume 125, Issue 5, article id.051101 (2020)","Evoli et al., Physical Review D, Volume 101, Issue 2, article id.023013 (2020)","Evoli et al., Physical Review D, Volume 99, Issue 10, id.103023 (2019)"]}
- Published
- 2022
- Full Text
- View/download PDF
10. Recent Results in Galactic Cosmic Ray Physics and Their Interpretation
- Author
-
Evoli, Carmelo
- Subjects
cosmic rays ,astroparticle physics - Abstract
Slides of the talk I gave at the NOW 2022 Conference: https://agenda.infn.it/event/30418/, {"references":["Evoli et al., 2021, Physical Review D, Volume 103, Issue 8, article id.083010, arXiv:2010.11955","Evoli et al., 2020, Physical Review Letters, Volume 125, Issue 5, article id.051101, arXiv:2007.01302","Evoli et al., 2020, Physical Review D, Volume 101, Issue 2, article id.023013, arXiv:1910.04113","Evoli et al., 2019, Physical Review D, Volume 99, Issue 10, id.103023, arXiv:1904.10220"]}
- Published
- 2022
- Full Text
- View/download PDF
11. Observable spectral and angular distributions of γ-rays from extragalactic ultrahigh energy cosmic ray accelerators: the case of extreme TeV blazars
- Author
-
Timur Dzhatdoev and E. V. Khalikov
- Subjects
Astroparticle physics ,Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy and Astrophysics ,Observable ,Cosmic ray ,Astrophysics ,01 natural sciences ,Extragalactic cosmic ray ,Spectral line ,Space and Planetary Science ,0103 physical sciences ,Intergalactic travel ,Astrophysics - High Energy Astrophysical Phenomena ,Blazar ,010303 astronomy & astrophysics ,Galaxy cluster - Abstract
Ultrahigh energy protons and nuclei from extragalactic cosmic ray sources initiate intergalactic electromagnetic cascades, resulting in observable fluxes of $\gamma$-rays in the GeV-TeV energy domain. The total spectrum of such cascade $\gamma$-rays of hadronic nature is significantly harder than the one usually expected from blazars. The spectra of some sources known as "extreme TeV blazars" could be well-described by this "intergalactic hadronic cascade model" (IHCM). We calculate the shape of the observable point-like spectrum, as well as the observable angular distibution of $\gamma$-rays, for the first time taking into account the effect of primary proton deflection in filaments and galaxy clusters of the extragalactic magnetic field assuming the model of Dolag et al. (2005). We present estimates of the width of the observable $\gamma$-ray angular distribution derived from simple geometrical considerations. We also employ a hybrid code to compute the observable spectral and angular distributions of $\gamma$-rays. The observable point-like spectrum at multi-TeV energies is much softer than the one averaged over all values of the observable angle. The presence of a high-energy cutoff in the observable spectra of extreme TeV blazars in the framework of the IHCM could significantly facilitate future searches of new physics processes that enhance the apparent $\gamma$-ray transparency of the Universe (for instance, $\gamma \rightarrow ALP$ oscillations). The width of the observable angular distribution is greater than or comparable to the extent of the point spread function of next-generation $\gamma$-ray telescopes., Comment: 16 pages, 17 figures, accepted for publication in MNRAS. This is the author's version and not the final typeset
- Published
- 2021
12. Estimation of the modulation level of cosmic rays at high energies
- Author
-
B. A. Shakhov, Yuriy L. Kolesnyk, Pavol Bobik, and M. Putis
- Subjects
Astroparticle physics ,Physics ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics ,01 natural sciences ,Space and Planetary Science ,Modulation ,0103 physical sciences ,010303 astronomy & astrophysics ,Heliosphere ,0105 earth and related environmental sciences - Abstract
In this article, we focus on the modulation of cosmic rays at high energies. The aim is to determine the limits of the ability of the heliosphere to modulate the intensities of cosmic rays in the inner heliosphere. We address the following questions: how large is the variation in cosmic rays intensities at high energies, i.e. close to 50, 100, and 200 GeV and above? What is the maximum energy at which modulation effects can be measured near the Earth? Specifically, we look at the magnitudes of the variation in cosmic rays intensity at 1 au over the period 1990–2012, at high energies. Attention is paid to energies of around 50, 100, and 150 GeV, where we can expect experimental results within the next decade.
- Published
- 2021
13. Direct measurement of upward-going ultrahigh energy dark matter at the Pierre Auger Observatory
- Author
-
Ye Xu
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,Pierre Auger Observatory ,Range (particle radiation) ,Photon ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Fermion ,Auger ,Nuclear physics ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Space and Planetary Science ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
In the present paper, it is assumed that there exist two dark matter particles: superheavy dark matter particles (SHDM), whose mass $\sim$ inflaton mass, and light fermion dark matter (DM) particles which are the ultrahigh energy (UHE) products of its decay. The Earth will be taken as a detector to directly search for the UHE DM particles. These upward-going particles, which pass through the Earth and air and interact with nuclei, can be detected by the fluorescence detectors (FD) of the Pierre Auger observatory (Auger), via fluorescent photons due to the development of an EAS. The numbers and fluxes of expected UHE DM particles are evaluated in the incoming energy range between 1 EeV and 1 ZeV with the different lifetimes of decay of SHDM and mass of $Z^{\prime}$. According to the Auger data from 2008 to 2019, the upper limit for UHE DM fluxes is estimated at 90\% C.L. with the FD of Auger. UHE DM particles could be directly detected in the energy range between O(1EeV) and O(10EeV) with the FD of Auger. Thus this might prove whether there exist SHDM particles in the Universe., 13 pages, 5 figures, accepted for publication in Publications of the Astronomical Society of Japan. arXiv admin note: substantial text overlap with arXiv:1904.12266
- Published
- 2021
14. The Southern<scp>Wide‐Field</scp>Gamma‐ray Observatory
- Author
-
Ulisses Barres de Almeida
- Subjects
Astroparticle physics ,Physics ,Space and Planetary Science ,Observatory ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Wide field ,Astronomical instrumentation - Published
- 2021
15. Resolving the high-energy neutrino sky at 3σ
- Author
-
Marek Kowalski
- Subjects
Astroparticle physics ,Physics ,COSMIC cancer database ,High-energy astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Bayesian probability ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Frequentist inference ,Sky ,High Energy Physics::Experiment ,Neutrino ,Neutrino astronomy ,media_common - Abstract
Identifying the sources of high-energy cosmic neutrinos has been a challenge. Considering frequentist and Bayesian arguments, as well as the special conditions found in neutrino astronomy, we discuss whether to believe current 3σ observations.
- Published
- 2021
16. Excluding possible sites of high-energy emission in 3C 84
- Author
-
Dominik Elsässer, Alexander Sandrock, Lena Linhoff, Wolfgang Rhode, and Matthias Kadler
- Subjects
Nuclear physics ,Astroparticle physics ,Physics ,High energy ,010308 nuclear & particles physics ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,0103 physical sciences ,Astronomy and Astrophysics ,010303 astronomy & astrophysics ,01 natural sciences - Abstract
The FR-I galaxy 3C 84, that is identified with the misaligned blazar NGC 1275, is well known as one of the very few radio galaxies emitting gamma-rays in the TeV range. Yet, the gamma-ray emission region cannot be pinpointed and the responsible mechanisms are still unclear. We calculate the optical absorption depth of high-energy photons in the broad-line region of 3C 84 depending on their energy and distance to the central black hole. Based on these calculations, a lower limit on the distance of the emission region from the central black hole can be derived. These lower limits are estimated for two broad-line region geometries (shell and ring) and two states of the source, the low state in 2016 October–December and a flare state in 2017 January. For the shell geometry, we can place the emission region outside the Ly α radius. For the ring geometry and the low flux activity, the minimal distance between the black hole, and the gamma-ray emission region is close to the Ly α radius. In the case of the flaring state (ring geometry), the results are not conclusive. Our results exclude the region near the central black hole as the origin of the gamma-rays detected by Fermi–LAT and Major Atmospheric Gamma-Ray Imaging Cherenkov. With these findings, we can constrain the theoretical models of acceleration mechanisms and compare the possible emission region to the source’s morphology resolved by radio images from the Very Long Baseline Array.
- Published
- 2020
17. Cosmic ray transport in mixed magnetic fields and their role on the observed anisotropies
- Author
-
Aimee Hungerford, Julia Speicher, Chris L. Fryer, and Margot Fitz Axen
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,Annihilation ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,Monte Carlo method ,FOS: Physical sciences ,Flux ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,3. Good health ,Magnetic field ,Computational physics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,Anisotropy ,010303 astronomy & astrophysics - Abstract
There is a growing set of observational data demonstrating that cosmic rays exhibit small-scale anisotropies (5-30 deg) with amplitude deviations lying between 0.01-0.1 percent that of the average cosmic ray flux. A broad range of models have been proposed to explain these anisotropies ranging from finite-scale magnetic field structures to dark matter annihilation. The standard diffusion transport methods used in cosmic ray propagation do not capture the transport physics in a medium with finite-scale or coherent magnetic field structures. Here, we present a Monte Carlo transport method, applying it to a series of finite-scale magnetic field structures to determine the requirements of such fields in explaining the observed cosmic ray,small-scale anisotropies., Comment: 14 pages, 13 figures
- Published
- 2020
18. Cosmic rays and magnetic fields in the core and halo of the starburst M82: implications for galactic wind physics
- Author
-
Tim Linden, Benjamin J. Buckman, and Todd A. Thompson
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,010308 nuclear & particles physics ,Advection ,Astrophysics::High Energy Astrophysical Phenomena ,Bremsstrahlung ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Radiation ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Galaxy ,Magnetic field ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Halo ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Cosmic rays (CRs) and magnetic fields may be dynamically important in driving large-scale galactic outflows from rapidly star-forming galaxies. We construct two-dimensional axisymmetric models of the local starburst and super-wind galaxy M82 using the CR propagation code GALPROP. Using prescribed gas density and magnetic field distributions, wind profiles, CR injection rates, and stellar radiation fields, we simultaneously fit both the integrated gamma-ray emission and the spatially-resolved multi-frequency radio emission extended along M82's minor axis. We explore the resulting constraints on the gas density, magnetic field strength, CR energy density, and the assumed CR advection profile. In accord with earlier one-zone studies, we generically find low central CR pressures, strong secondary electron/positron production, and an important role for relativistic bremsstrahlung losses in shaping the synchrotron spectrum. We find that the relatively low central CR density produces CR pressure gradients that are weak compared to gravity, strongly limiting the role of CRs in driving M82's fast and mass-loaded galactic outflow. Our models require strong magnetic fields and advection speeds of order ~1000 km/s on kpc scales along the minor axis in order to reproduce the extended radio emission. Degeneracies between the controlling physical parameters of the model and caveats to these findings are discussed., submitted to MNRAS, 26 pages
- Published
- 2020
19. A muon-based observable for a photon search at 30–300 PeV
- Author
-
A. Etchegoyen, F. Sánchez, Nicolás González, and Markus Roth
- Subjects
Astroparticle physics ,Physics ,Range (particle radiation) ,Photon ,Muon ,Proton ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Observable ,Cosmic ray ,01 natural sciences ,Nuclear physics ,Air shower ,0103 physical sciences ,High Energy Physics::Experiment ,010303 astronomy & astrophysics - Abstract
The observation of an ultra-high energy photon component of the cosmic radiation is one of the open problems in Astroparticle Physics. The stringent theoretical and experimental upper limits to the photon flux above 100 TeV make the search of a weak photon signal in the vast hadronic cosmic ray background a challenging task. At these energies, photon primaries entering the atmosphere develop an extensive air shower which is driven by electromagnetic processes with a poor muon component. The muon content of the air showers is one of the most promising observables that could lead to the best possible discrimination between photons and hadronic cosmic rays. In this article, we define a parameter capable of quantifying the muon component while reducing the fluctuations due to the unknown lateral distribution of muons. We explain the different features of this observable using simulated air showers between 30 and 300 PeV. We show that a merit factor of 5 in the separation between photon and proton primaries and a photon signal efficiency of at least ∼ 92% while rejecting 99.97% of the proton-initiated showers can be reached in the mentioned energy range of interest. This separation power can be achieved provided the shower features, specially the primary energy, are reconstructed sufficiently precise and without significant biases.
- Published
- 2020
20. Perspectives for multi-messenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites
- Author
-
S. Ronchini, M. Branchesi, G. Oganesyan, B. Banerjee, U. Dupletsa, G. Ghirlanda, J. Harms, M. Mapelli, and F. Santoliquido
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma-ray burst: general ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Gravitational waves ,Astroparticle physics ,Space and Planetary Science ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
The Einstein Telescope (ET) is going to bring a revolution for the future of multi-messenger astrophysics. In order to detect the counterparts of binary neutron star (BNS) mergers at high redshift, the high-energy observations will play a crucial role. Here, we explore the perspectives of ET, as single observatory and in a network of gravitational-wave (GW) detectors, operating in synergy with future $\gamma$-ray and X-ray satellites. We predict the high-energy emission of BNS mergers and its detectability in a theoretical framework which is able to reproduce the properties of the current sample of observed short GRBs (SGRB). We estimate the joint GW and high-energy detection rate for both the prompt and afterglow emissions, testing several combinations of instruments and observational strategies. We find that the vast majority of SGRBs detected in $\gamma$-rays will have a detectable GW counterpart; the joint detection efficiency approaches $100\%$ considering a network of third generation GW observatories. The probability of identifying the electromagnetic counterpart of BNS mergers is significantly enhanced if the sky localisation provided by GW instruments is observed by wide field X-ray monitors. We emphasize that the role of the future X-ray observatories will be very crucial for the detection of the fainter emission outside the jet core, which will allow us to probe the yet unexplored population of low-luminosity SGRBs in the nearby Universe, as well as to unveil the nature of the jet structure and the connections with the progenitor properties., Comment: Submitted to the journal
- Published
- 2022
- Full Text
- View/download PDF
21. GCOS - The Global Cosmic Ray Observatory
- Author
-
Hörandel, J., Abbasi, R., Alves Batista, R., Carvalho, W.R., Jong, S.J. de, Galea, C., Giaccari, U., Khakurdikar, A.R., and Pont, B.B.T.
- Subjects
Pierre Auger Observatory ,Astroparticle physics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Gravitational wave ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Dark matter ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,law.invention ,Telescope ,law ,Observatory ,Experimental High Energy Physics ,High Energy Physics ,Neutrino ,Cosmic-ray observatory ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
Nature is providing particles with energies exceeding 100 EeV. Their existence imposes immediate questions: Are they ordinary particles, accelerated in extreme astrophysical environments, or are they annihilation or decay products of super-heavy dark matter or other exotic objects? If the particles are accelerated in extreme astrophysical environments, are their sources related to those of high-energy neutrinos, gamma rays, and/or gravitational waves, such as the recently observed mergers of compact objects? The particles can also be used to study physics processes at extreme energies; is Lorentz invariance still valid? Are the particles interacting according to the Standard Model or are there new physics processes? The particles can be used to study hadronic interactions (QCD) in the kinematic forward direction; what is the cross section of protons at center-of-mass energies $\sqrt{s} > 100$~TeV? These questions are addressed at present by installations like the Telescope Array and the Pierre Auger Observatory. After the year 2030, a next-generation observatory will be needed to study the physics and properties of the highest-energy particles in Nature, building on the knowledge harvested from the existing observatories. It should have an aperture at least an order of magnitude bigger than the existing observatories. Recently, more than 200 scientists from around the world came together to discuss the future of the field of multi-messenger astroparticle physics beyond the year 2030. Ideas have been discussed towards the physics case and possible scenarios for detection concepts of the Global Cosmic Ray Observatory - GCOS. A synopsis of the key results discussed during the brainstorming workshop will be presented.
- Published
- 2022
22. A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics
- Author
-
Aalbers, J, AbdusSalam, SS, Abe, K, Aerne, V, Agostini, F, Ahmed Maouloud, S, Akerib, DS, Akimov, DY, Akshat, J, Al Musalhi, AK, Alder, F, Alsum, SK, Althueser, L, Amarasinghe, CS, Amaro, FD, Ames, A, Anderson, TJ, Andrieu, B, Angelides, N, Angelino, E, Angevaare, J, Antochi, VC, Antón Martin, D, Antunovic, B, Aprile, E, Araújo, HM, Armstrong, JE, Arneodo, F, Arthurs, M, Asadi, P, Baek, S, Bai, X, Bajpai, D, Baker, A, Balajthy, J, Balashov, S, Balzer, M, Bandyopadhyay, A, Bang, J, Barberio, E, Bargemann, JW, Baudis, L, Bauer, D, Baur, D, Baxter, A, Baxter, AL, Bazyk, M, Beattie, K, Behrens, J, Bell, NF, Bellagamba, L, Beltrame, P, Benabderrahmane, M, Bernard, EP, Bertone, GF, Bhattacharjee, P, Bhatti, A, Biekert, A, Biesiadzinski, TP, Binau, AR, Biondi, R, Biondi, Y, Birch, HJ, Bishara, F, Bismark, A, Blanco, C, Blockinger, GM, Bodnia, E, Boehm, C, Bolozdynya, AI, Bolton, PD, Bottaro, S, Bourgeois, C, Boxer, B, Brás, P, Breskin, A, Breur, PA, Brew, CAJ, Brod, J, Brookes, E, Brown, A, Brown, E, Bruenner, S, Bruno, G, Budnik, R, Bui, TK, Burdin, S, Buse, S, Busenitz, JK, Buttazzo, D, Buuck, M, Buzulutskov, A, Cabrita, R, Cai, C, Cai, D, Capelli, C, Cardoso, JMR, Carmona-Benitez, MC, Cascella, M, Catena, R, Chakraborty, S, Chan, C, Chang, S, Chauvin, A, Chawla, A, Chen, H, Chepel, V, Chott, NI, Cichon, D, Cimental Chavez, A, Cimmino, B, Clark, M, Co, RT, Colijn, AP, Conrad, J, Converse, MV, Costa, M, Cottle, A, Cox, G, Creaner, O, Cuenca Garcia, JJ, Cussonneau, JP, Cutter, JE, Dahl, CE, D’Andrea, V, David, A, Decowski, MP, Dent, JB, Deppisch, FF, De Viveiros, L, Di Gangi, P, Di Giovanni, A, Di Pede, S, Dierle, J, Diglio, S, Dobson, JEY, Doerenkamp, M, Douillet, D, Drexlin, G, Druszkiewicz, E, Dunsky, D, Eitel, K, Elykov, A, Emken, T, Engel, R, Eriksen, Fairbairn, M, Fan, A, Fan, JJ, Farrell, SJ, Fayer, S, Fearon, NM, Ferella, A, Ferrari, C, Fieguth, A, Fiorucci, S, Fischer, H, Flaecher, H, Flierman, M, Florek, T, Foot, R, Fox, PJ, Franceschini, R, Fraser, ED, Frenk, CS, Frohlich, S, Fruth, T, Fulgione, W, Fuselli, C, Gaemers, P, Gaior, R, Gaitskell, RJ, Galloway, M, Gao, F, Garcia Garcia, I, Genovesi, J, Ghag, C, Ghosh, S, Gibson, E, Gil, W, Giovagnoli, D, Girard, F, Glade-Beucke, R, Glück, F, Gokhale, S, De Gouvêa, A, Gráf, L, Grandi, L, Grigat, J, Grinstein, B, Van Der Grinten, MGD, Grössle, R, Guan, H, Guida, M, Gumbsheimer, R, Gwilliam, CB, Hall, CR, Hall, LJ, Hammann, R, Han, K, Hannen, V, Hansmann-Menzemer, S, Harata, R, Hardin, SP, Hardy, E, Hardy, CA, Harigaya, K, Harnik, R, Haselschwardt, SJ, Hernandez, M, Hertel, SA, Higuera, A, Hils, C, Hochrein, S, Hoetzsch, L, Hoferichter, M, Hood, N, Hooper, D, Horn, M, Howlett, J, Huang, DQ, Huang, Y, Hunt, D, Iacovacci, M, Iaquaniello, G, Ide, R, Ignarra, CM, Iloglu, G, Itow, Y, Jacquet, E, Jahangir, O, Jakob, J, James, RS, Jansen, A, Ji, W, Ji, X, Joerg, F, Johnson, J, Joy, A, Kaboth, AC, Kalhor, L, Kamaha, AC, Kanezaki, K, Kar, K, Kara, M, Kato, N, Kavrigin, P, Kazama, S, Keaveney, AW, Kellerer, J, Khaitan, D, Khazov, A, Khundzakishvili, G, Khurana, I, Kilminster, B, Kleifges, M, Ko, P, Kobayashi, M, Kodroff, D, Koltmann, G, Kopec, A, Kopmann, A, Kopp, J, Korley, L, Kornoukhov, VN, Korolkova, EV, Kraus, H, Krauss, LM, Kravitz, S, Kreczko, L, Kudryavtsev, VA, Kuger, F, Kumar, J, López Paredes, B, LaCascio, L, Laha, R, Laine, Q, Landsman, H, Lang, RF, Leason, EA, Lee, J, Leonard, DS, Lesko, KT, Levinson, L, Levy, C, Li, I, Li, SC, Li, T, Liang, S, Liebenthal, CS, Lin, J, Lin, Q, Lindemann, S, Lindner, M, Lindote, A, Linehan, R, Lippincott, WH, Liu, X, Liu, K, Liu, J, Loizeau, J, Lombardi, F, Long, J, Lopes, MI, Lopez Asamar, E, Lorenzon, W, Lu, C, Luitz, S, Ma, Y, Machado, PAN, Macolino, C, Maeda, T, Mahlstedt, J, Majewski, PA, Manalaysay, A, Mancuso, A, Manenti, L, Manfredini, A, Mannino, RL, Marangou, N, March-Russell, J, Marignetti, F, Marrodán Undagoitia, T, Martens, K, Martin, R, Martinez-Soler, I, Masbou, J, Masson, D, Masson, E, Mastroianni, S, Mastronardi, M, Matias-Lopes, JA, McCarthy, ME, McFadden, N, McGinness, E, McKinsey, DN, McLaughlin, J, McMichael, K, Meinhardt, P, Menéndez, J, Meng, Y, Messina, M, Midha, R, Milisavljevic, D, Miller, EH, Milosevic, B, Milutinovic, S, Mitra, SA, Miuchi, K, Mizrachi, E, Mizukoshi, K, Molinario, A, Monte, A, Monteiro, CMB, Monzani, ME, Moore, JS, Morå, K, Morad, JA, Morales Mendoza, JD, Moriyama, S, Morrison, E, Morteau, E, Mosbacher, Y, Mount, BJ, Mueller, J, Murphy, A St J, Murra, M, Naim, D, Nakamura, S, Nash, E, Navaieelavasani, N, Naylor, A, Nedlik, C, Nelson, HN, Neves, F, Newstead, JL, Ni, K, Nikoleyczik, JA, Niro, V, Oberlack, UG, Obradovic, M, Odgers, K, O’Hare, CAJ, Oikonomou, P, Olcina, I, Oliver-Mallory, K, Oranday, A, Orpwood, J, Ostrovskiy, I, Ozaki, K, Paetsch, B, Pal, S, Palacio, J, Palladino, KJ, Palmer, J, Panci, P, Pandurovic, M, Parlati, A, Parveen, N, Patton, SJ, Pěč, V, Pellegrini, Q, Penning, B, Pereira, G, Peres, R, Perez-Gonzalez, Y, Perry, E, Pershing, T, Petrossian-Byrne, R, Pienaar, J, Piepke, A, Pieramico, G, Pierre, M, Piotter, M, Pizzella, V, Plante, G, Pollmann, T, Porzio, D, Qi, J, Qie, Y, Qin, J, Quevedo, F, Raj, N, Rajado Silva, M, Ramanathan, K, Ramírez García, D, Ravanis, J, Redard-Jacot, L, Redigolo, D, Reichard, S, Reichenbacher, J, Rhyne, CA, Richards, A, Riffard, Q, Rischbieter, GRC, Rocchetti, A, Rosenfeld, SL, Rosero, R, Rupp, N, Rushton, T, Saha, S, Salucci, P, Sanchez, L, Sanchez-Lucas, P, Santone, D, Dos Santos, JMF, Sarnoff, I, Sartorelli, G, Sazzad, ABMR, Scheibelhut, M, Schnee, RW, Schrank, M, Schreiner, J, Schulte, P, Schulte, D, Schulze Eissing, H, Schumann, M, Schwemberger, T, Schwenk, A, Schwetz, T, Scotto Lavina, L, Scovell, PR, Sekiya, H, Selvi, M, Semenov, E, Semeria, F, Shagin, P, Shaw, S, Shi, S, Shockley, E, Shutt, TA, Si-Ahmed, R, Silk, JJ, Silva, C, Silva, MC, Simgen, H, Šimkovic, F, Sinev, G, Singh, R, Skulski, W, Smirnov, J, Smith, R, Solmaz, M, Solovov, VN, Sorensen, P, Soria, J, Sparmann, TJ, Stancu, I, Steidl, M, Stevens, A, Stifter, K, Strigari, LE, Subotic, D, Suerfu, B, Suliga, AM, Sumner, TJ, Szabo, P, Szydagis, M, Takeda, A, Takeuchi, Y, Tan, P-L, Taricco, C, Taylor, WC, Temples, DJ, Terliuk, A, Terman, PA, Thers, D, Thieme, K, Thümmler, T, Tiedt, DR, Timalsina, M, To, WH, Toennies, F, Tong, Z, Toschi, F, Tovey, DR, Tranter, J, Trask, M, Trinchero, GC, Tripathi, M, Tronstad, DR, Trotta, R, Tsai, YD, Tunnell, CD, Turner, WG, Ueno, R, Urquijo, P, Utku, U, Vaitkus, A, Valerius, K, Vassilev, E, Vecchi, S, Velan, V, Vetter, S, Vincent, AC, Vittorio, L, Volta, G, Von Krosigk, B, Von Piechowski, M, Vorkapic, D, Wagner, CEM, Wang, AM, Wang, B, Wang, Y, Wang, W, Wang, JJ, Wang, L-T, Wang, M, Watson, Wei, Y, Weinheimer, C, Weisman, E, Weiss, M, Wenz, D, West, SM, Whitis, TJ, Williams, M, Wilson, MJ, Winkler, D, Wittweg, C, Wolf, J, Wolf, T, Wolfs, FLH, Woodford, S, Woodward, D, Wright, CJ, Wu, VHS, Wu, P, Wüstling, S, Wurm, M, Xia, Q, Xiang, X, Xing, Y, Xu, J, Xu, Z, Xu, D, Yamashita, M, Yamazaki, R, Yan, H, Yang, L, Yang, Y, Ye, J, Yeh, M, Young, I, Yu, HB, Yu, TT, Yuan, L, Zavattini, G, Zerbo, S, Zhang, Y, Zhong, M, Zhou, N, Zhou, X, Zhu, T, Zhu, Y, Zhuang, Y, Zopounidis, JP, Zuber, K, Zupan, J, Aalbers, J, S AbdusSalam, S, Abe, K, Aerne, V, Agostini, F, Ahmed Maouloud, S, S Akerib, D, Y Akimov, D, Akshat, J, K Al Musalhi, A, Alder, F, K Alsum, S, Althueser, L, S Amarasinghe, C, D Amaro, F, Ames, A, J Anderson, T, Andrieu, B, Angelides, N, Angelino, E, Angevaare, J, C Antochi, V, Ant??n Martin, D, Antunovic, B, Aprile, E, M Ara??jo, H, E Armstrong, J, Arneodo, F, Arthurs, M, Asadi, P, Baek, S, Bai, X, Bajpai, D, Baker, A, Balajthy, J, Balashov, S, Balzer, M, Bandyopadhyay, A, Bang, J, Barberio, E, W Bargemann, J, Baudis, L, Bauer, D, Baur, D, Baxter, A, L Baxter, A, Bazyk, M, Beattie, K, Behrens, J, F Bell, N, Bellagamba, L, Beltrame, P, Benabderrahmane, M, P Bernard, E, F Bertone, G, Bhattacharjee, P, Bhatti, A, Biekert, A, P Biesiadzinski, T, R Binau, A, Biondi, R, Biondi, Y, J Birch, H, Bishara, F, Bismark, A, Blanco, C, M Blockinger, G, Bodnia, E, Boehm, C, I Bolozdynya, A, D Bolton, P, Bottaro, S, Bourgeois, C, Boxer, B, Br??s, P, Breskin, A, A Breur, P, J Brew, C A, Brod, J, Brookes, E, Brown, A, Brown, E, Bruenner, S, Bruno, G, Budnik, R, K Bui, T, Burdin, S, Buse, S, K Busenitz, J, Buttazzo, D, Buuck, M, Buzulutskov, A, Cabrita, R, Cai, C, Cai, D, Capelli, C, R Cardoso, J M, C Carmona-Benitez, M, Cascella, M, Catena, R, Chakraborty, S, Chan, C, Chang, S, Chauvin, A, Chawla, A, Chen, H, Chepel, V, I Chott, N, Cichon, D, Cimental Chavez, A, Cimmino, B, Clark, M, T Co, R, P Colijn, A, Conrad, J, V Converse, M, Costa, M, Cottle, A, Cox, G, Creaner, O, J Cuenca Garcia, J, P Cussonneau, J, E Cutter, J, E Dahl, C, D???andrea, V, David, A, P Decowski, M, B Dent, J, F Deppisch, F, de Viveiros, L, Di Gangi, P, Di Giovanni, A, Di Pede, S, Dierle, J, Diglio, S, Y Dobson, J E, Doerenkamp, M, Douillet, D, Drexlin, G, Druszkiewicz, E, Dunsky, D, Eitel, K, Elykov, A, Emken, T, Engel, R, R Eriksen, S, Fairbairn, M, Fan, A, J Fan, J, J Farrell, S, Fayer, S, M Fearon, N, Ferella, A, Ferrari, C, Fieguth, A, Fiorucci, S, Fischer, H, Flaecher, H, Flierman, M, Florek, T, Foot, R, J Fox, P, Franceschini, R, D Fraser, E, S Frenk, C, Frohlich, S, Fruth, T, Fulgione, W, Fuselli, C, Gaemers, P, Gaior, R, J Gaitskell, R, Galloway, M, Gao, F, Garcia Garcia, I, Genovesi, J, Ghag, C, Ghosh, S, Gibson, E, Gil, W, Giovagnoli, D, Girard, F, Glade-Beucke, R, Gl??ck, F, Gokhale, S, de Gouv??a, A, Gr??f, L, Grandi, L, Grigat, J, Grinstein, B, D van der Grinten, M G, Gr??ssle, R, Guan, H, Guida, M, Gumbsheimer, R, B Gwilliam, C, R Hall, C, J Hall, L, Hammann, R, Han, K, Hannen, V, Hansmann-Menzemer, S, Harata, R, P Hardin, S, Hardy, E, A Hardy, C, Harigaya, K, Harnik, R, J Haselschwardt, S, Hernandez, M, A Hertel, S, Higuera, A, Hils, C, Hochrein, S, Hoetzsch, L, Hoferichter, M, Hood, N, Hooper, D, Horn, M, Howlett, J, Q Huang, D, Huang, Y, Hunt, D, Iacovacci, M, Iaquaniello, G, Ide, R, M Ignarra, C, Iloglu, G, Itow, Y, Jacquet, E, Jahangir, O, Jakob, J, S James, R, Jansen, A, Ji, W, Ji, X, Joerg, F, Johnson, J, Joy, A, C Kaboth, A, Kalhor, L, C Kamaha, A, Kanezaki, K, Kar, K, Kara, M, Kato, N, Kavrigin, P, Kazama, S, W Keaveney, A, Kellerer, J, Khaitan, D, Khazov, A, Khundzakishvili, G, Khurana, I, Kilminster, B, Kleifges, M, Ko, P, Kobayashi, M, Kodroff, D, Koltmann, G, Kopec, A, Kopmann, A, Kopp, J, Korley, L, N Kornoukhov, V, V Korolkova, E, Kraus, H, M Krauss, L, Kravitz, S, Kreczko, L, A Kudryavtsev, V, Kuger, F, Kumar, J, L??pez Paredes, B, Lacascio, L, Laha, R, Laine, Q, Landsman, H, F Lang, R, A Leason, E, Lee, J, S Leonard, D, T Lesko, K, Levinson, L, Levy, C, I, Li, C Li, S, Li, T, Liang, S, S Liebenthal, C, Lin, J, Lin, Q, Lindemann, S, Lindner, M, Lindote, A, Linehan, R, H Lippincott, W, Liu, X, Liu, K, Liu, J, Loizeau, J, Lombardi, F, Long, J, I Lopes, M, Lopez Asamar, E, Lorenzon, W, Lu, C, Luitz, S, Ma, Y, N Machado, P A, Macolino, C, Maeda, T, Mahlstedt, J, A Majewski, P, Manalaysay, A, Mancuso, A, Manenti, L, Manfredini, A, L Mannino, R, Marangou, N, March-Russell, J, Marignetti, F, Marrod??n Undagoitia, T, Martens, K, Martin, R, Martinez-Soler, I, Masbou, J, Masson, D, Masson, E, Mastroianni, S, Mastronardi, M, A Matias-Lopes, J, E McCarthy, M, Mcfadden, N, Mcginness, E, N McKinsey, D, Mclaughlin, J, Mcmichael, K, Meinhardt, P, Men??ndez, J, Meng, Y, Messina, M, Midha, R, Milisavljevic, D, H Miller, E, Milosevic, B, Milutinovic, S, A Mitra, S, Miuchi, K, Mizrachi, E, Mizukoshi, K, Molinario, A, Monte, A, B Monteiro, C M, E Monzani, M, S Moore, J, Mor??, K, A Morad, J, D Morales Mendoza, J, Moriyama, S, Morrison, E, Morteau, E, Mosbacher, Y, J Mount, B, Mueller, J, J Murphy, A St, Murra, M, Naim, D, Nakamura, S, Nash, E, Navaieelavasani, N, Naylor, A, Nedlik, C, N Nelson, H, Neves, F, L Newstead, J, Ni, K, A Nikoleyczik, J, Niro, V, G Oberlack, U, Obradovic, M, Odgers, K, J O???Hare, C A, Oikonomou, P, Olcina, I, Oliver-Mallory, K, Oranday, A, Orpwood, J, Ostrovskiy, I, Ozaki, K, Paetsch, B, Pal, S, Palacio, J, J Palladino, K, Palmer, J, Panci, P, Pandurovic, M, Parlati, A, Parveen, N, J Patton, S, P????, V, Pellegrini, Q, Penning, B, Pereira, G, Peres, R, Perez-Gonzalez, Y, Perry, E, Pershing, T, Petrossian-Byrne, R, Pienaar, J, Piepke, A, Pieramico, G, Pierre, M, Piotter, M, Pizzella, V, Plante, G, Pollmann, T, Porzio, D, Qi, J, Qie, Y, Qin, J, Quevedo, F, Raj, N, Rajado Silva, M, Ramanathan, K, Ram??rez Garc??a, D, Ravanis, J, Redard-Jacot, L, Redigolo, D, Reichard, S, Reichenbacher, J, A Rhyne, C, Richards, A, Riffard, Q, C Rischbieter, G R, Rocchetti, A, L Rosenfeld, S, Rosero, R, Rupp, N, Rushton, T, Saha, S, Salucci, P, Sanchez, L, Sanchez-Lucas, P, Santone, D, F dos Santos, J M, Sarnoff, I, Sartorelli, G, R Sazzad, A B M, Scheibelhut, M, W Schnee, R, Schrank, M, Schreiner, J, Schulte, P, Schulte, D, Schulze Eissing, H, Schumann, M, Schwemberger, T, Schwenk, A, Schwetz, T, Scotto Lavina, L, R Scovell, P, Sekiya, H, Selvi, M, Semenov, E, Semeria, F, Shagin, P, Shaw, S, Shi, S, Shockley, E, A Shutt, T, Si-Ahmed, R, J Silk, J, Silva, C, C Silva, M, Simgen, H, imkovic, F, Sinev, G, Singh, R, Skulski, W, Smirnov, J, Smith, R, Solmaz, M, N Solovov, V, Sorensen, P, Soria, J, J Sparmann, T, Stancu, I, Steidl, M, Stevens, A, Stifter, K, E Strigari, L, Subotic, D, Suerfu, B, M Suliga, A, J Sumner, T, Szabo, P, Szydagis, M, Takeda, A, Takeuchi, Y, Tan, P-L, Taricco, C, C Taylor, W, J Temples, D, Terliuk, A, A Terman, P, Thers, D, Thieme, K, Th??mmler, T, R Tiedt, D, Timalsina, M, H To, W, Toennies, F, Tong, Z, Toschi, F, R Tovey, D, Tranter, J, Trask, M, C Trinchero, G, Tripathi, M, R Tronstad, D, Trotta, R, D Tsai, Y, D Tunnell, C, G Turner, W, Ueno, R, Urquijo, P, Utku, U, Vaitkus, A, Valerius, K, Vassilev, E, Vecchi, S, Velan, V, Vetter, S, C Vincent, A, Vittorio, L, Volta, G, von Krosigk, B, von Piechowski, M, Vorkapic, D, M Wagner, C E, M Wang, A, Wang, B, Wang, Y, Wang, W, J Wang, J, Wang, L-T, Wang, M, R Watson, J, Wei, Y, Weinheimer, C, Weisman, E, Weiss, M, Wenz, D, M West, S, J Whitis, T, Williams, M, J Wilson, M, Winkler, D, Wittweg, C, Wolf, J, Wolf, T, H Wolfs, F L, Woodford, S, Woodward, D, J Wright, C, S Wu, V H, Wu, P, W??stling, S, Wurm, M, Xia, Q, Xiang, X, Xing, Y, Xu, J, Xu, Z, Xu, D, Yamashita, M, Yamazaki, R, Yan, H, Yang, L, Yang, Y, Ye, J, Yeh, M, Young, I, B Yu, H, T Yu, T, Yuan, L, Zavattini, G, Zerbo, S, Zhang, Y, Zhong, M, Zhou, N, Zhou, X, Zhu, T, Zhu, Y, Zhuang, Y, P Zopounidis, J, Zuber, K, Zupan, J, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique subatomique et des technologies associées (SUBATECH), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), HEP, INSPIRE, Lang, RF [0000-0001-7594-2746], Schumann, M [0000-0002-5036-1256], and Apollo - University of Cambridge Repository
- Subjects
detector: technology ,Nuclear and High Energy Physics ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics - Instrumentation and Detectors ,[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex] ,Physics::Instrumentation and Detectors ,530 Physics ,FOS: Physical sciences ,dark matter ,neutrinoless double-beta decay ,neutrinos ,supernova ,direct detection ,astroparticle physics ,xenon ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,double-beta decay: (0neutrino) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Nuclear Physics - Experiment ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Topical Review ,Nuclear Experiment (nucl-ex) ,Detectors and Experimental Techniques ,physics.ins-det ,Nuclear Experiment ,Engineering & allied operations ,activity report ,xenon: liquid ,hep-ex ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,dark matter: detector ,[PHYS.PHYS.PHYS-INS-DET] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,astro-ph.CO ,time projection chamber: xenon ,High Energy Physics::Experiment ,ddc:620 ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Particle Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector., 77 pages, 40 figures, 1262 references
- Published
- 2022
23. Are pulsar halos rare ?
- Author
-
Martin, Pierrick, Marcowith, Alexandre, Tibaldo, Luigi, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and ANR-19-CE31-0014,GAMALO,Révéler l'étendue des halos gamma(2019)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,gamma rays: ISM ,cosmic rays ,astroparticle physics ,pulsars: general ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
Extended gamma-ray emission, interpreted as halos formed by the inverse-Compton scattering of ambient photons by electron-positron pairs, is observed toward a number of middle-aged pulsars. The physical origin and actual commonness of the phenomenon in the Galaxy remain unclear. The conditions of pair confinement seem extreme compared to what can be achieved in recent theoretical models. We searched for scenarios minimizing as much as possible the extent and magnitude of diffusion suppression in the halos in J0633+1746 and B0656+14, and explored the implications on the local positron flux if they are applied to all nearby middle-aged pulsars. We used a phenomenological static two-zone diffusion framework and compared its predictions with Fermi-LAT and HAWC observations of the two halos, and with the local positron flux measured with AMS-02. While strong diffusion suppression by 2-3 orders of magnitude at ~100TeV is required by the data, it is possible to find solutions with diffusion suppression extents as small as 30pc for both objects. If all nearby middle-aged pulsars develop such halos, their combined positron flux including the contribution from Geminga would saturate the >100GeV AMS-02 measurement for injection efficiencies that are much smaller than those inferred for the canonical halos in J0633+1746 and B0656+14, and more generally with the values typical of younger pulsar wind nebulae. Conversely, if positrons from other nearby pulsars are released in the interstellar medium without any confinement around the source, their total positron flux fits into the observed spectrum for the same injection efficiencies of a few tens of percent for all pulsars, from kyr-old objects powering pulsar wind nebulae to 100kyr-old objects like J0633+1746 and B0656+14. It seems a simpler scenario to assume that most middle-aged pulsars do not develop halos (abridged)., 17 pages, 22 figures, accepted for publication in A&A
- Published
- 2022
- Full Text
- View/download PDF
24. The Forward Physics Facility at the High-Luminosity LHC
- Author
-
Feng, Jonathan L., Kling, Felix, Reno, Mary Hall, Rojo, Juan, Soldin, Dennis, Anchordoqui, Luis A., Boyd, Jamie, Ismail, Ahmed, Harland-Lang, Lucian, Kelly, Kevin J., Pandey, Vishvas, Trojanowski, Sebastian, Tsai, Yu-Dai, Alameddine, Jean-Marco, Araki, Takeshi, Ariga, Akitaka, Ariga, Tomoko, Asai, Kento, Bacchetta, Alessandro, Balazs, Kincso, Barr, Alan J., Battistin, Michele, Bian, Jianming, Bertone, Caterina, Bai, Weidong, Bakhti, Pouya, Balantekin, A. Baha, Barman, Basabendu, Batell, Brian, Bauer, Martin, Bauer, Brian, Becker, Mathias, Berlin, Asher, Bertuzzo, Enrico, Bhattacharya, Atri, Bonvini, Marco, Boogert, Stewart T., Boyarsky, Alexey, Bramante, Joseph, Brdar, Vedran, Carmona, Adrian, Casper, David W., Celiberto, Francesco Giovanni, Cerutti, Francesco, Chachamis, Grigorios, Chauhan, Garv, Citron, Matthew, Copello, Emanuele, Corso, Jean-Pierre, Darmé, Luc, d'Agnolo, Raffaele Tito, Darvishi, Neda, Das, Arindam, de Lellis, Giovanni, de Roeck, Albert, de Vries, Jordy, Dembinski, Hans P., Demidov, Sergey, Deniverville, Patrick, Denton, Peter B., Deppisch, Frank F., Dev, P.S. Bhupal, Di Crescenzo, Antonia, Dienes, Keith R., Diwan, Milind V., Dreiner, Herbi K., Du, Yong, Dutta, Bhaskar, Duwentäster, Pit, Elie, Lucie, Ellis, Sebastian A.R., Enberg, Rikard, Farzan, Yasaman, Fieg, Max, Foguel, Ana Luisa, Foldenauer, Patrick, Foroughi-Abari, Saeid, Fortin, Jean-François, Friedland, Alexander, Fuchs, Elina, Fucilla, Michael, Gallmeister, Kai, Garcia, Alfonso, García Canal, Carlos A., Garzelli, Maria Vittoria, Gauld, Rhorry, Ghosh, Sumit, Ghoshal, Anish, Gibson, Stephen, Giuli, Francesco, Gonçalves, Victor P., Gorbunov, Dmitry, Goswami, Srubabati, Grau, Silvia, Günther, Julian Y., Guzzi, Marco, Haas, Andrew, Hakulinen, Timo, Harris, Steven P., Harz, Julia, Herrera, Juan Carlos Helo, Hill, Christopher S., Hirsch, Martin, Hobbs, Timothy J., Höche, Stefan, Hryczuk, Andrzej, Huang, Fei, Inada, Tomohiro, Infantino, Angelo, Ismail, Ameen, Jacobsson, Richard, Jana, Sudip, Jeong, Yu Seon, Ježo, Tomas, Jho, Yongsoo, Jodłowski, Krzysztof, Lowski, Krzysztof Jod, Kalashnikov, Dmitry, Kärkkäinen, Timo J., Keppel, Cynthia, Kim, Jongkuk, Klasen, Michael, Klein, Spencer R., Ko, Pyungwon, Köhler, Dominik, Komatsu, Masahiro, Kovaˇrík, Karol, Kulkarni, Suchita, Kumar, Jason, Kumar, Karan, Kuo, Jui-Lin, Krauss, Frank, Kusina, Aleksander, Laletin, Maxim, Le Roux, Chiara, Lee, Seung J., Lee, Hye-Sung, Lefebvre, Helena, Li, Jinmian, Li, Shuailong, Li, Yichen, Liu, Wei, Liu, Zhen, Lonjon, Mickael, Lyu, Kun-Feng, Maciula, Rafal, Mammen Abraham, Roshan, Masouminia, Mohammad R., Mcfayden, Josh, Mikulenko, Oleksii, Mohammed, Mohammed M.A., Mohan, Kirtimaan A., Morfín, Jorge G., Mosel, Ulrich, Mosny, Martin, Muzakka, Khoirul F., Nadolsky, Pavel, Nakano, Toshiyuki, Nangia, Saurabh, Cornago, Angel Navascues, Nevay, Laurence J., Ninin, Pierre, Nocera, Emanuele R., Nomura, Takaaki, Nunes, Rui, Okada, Nobuchika, Olness, Fred, Osborne, John, Otono, Hidetoshi, Ovchynnikov, Maksym, Papa, Alessandro, Pei, Junle, Peon, Guillermo, Perez, Gilad, Pickering, Luke, Plätzer, Simon, Plestid, Ryan, Poddar, Tanmay Kumar, Quílez, Pablo, Rai, Mudit, Rajaee, Meshkat, Raut, Digesh, Reimitz, Peter, Resnati, Filippo, Rhode, Wolfgang, Richardson, Peter, Ritz, Adam, Rokujo, Hiroki, Roszkowski, Leszek, Ruhe, Tim, Ruiz, Richard, Sabate-Gilarte, Marta, Sandrock, Alexander, Sarcevic, Ina, Sarkar, Subir, Sato, Osamu, Scherb, Christiane, Schienbein, Ingo, Schulz, Holger, Schwaller, Pedro, Sciutto, Sergio J., Sengupta, Dipan, Shchutska, Lesya, Shimomura, Takashi, Silvetti, Federico, Sinha, Kuver, Sjöstrand, Torbjörn, Sobczyk, Jan T., Song, Huayang, Soriano, Jorge F., Soreq, Yotam, Stasto, Anna, Stuart, David, Su, Shufang, Su, Wei, Szczurek, Antoni, Tabrizi, Zahra, Takubo, Yosuke, Taoso, Marco, Thomas, Brooks, Thonet, Pierre, Tuckler, Douglas, Sabio Vera, Agustin, Vincke, Heinz, Vishnudath, K.N., Wang, Zeren Simon, Winkler, Martin W., Wu, Wenjie, Xie, Keping, Xu, Xun-Jie, You, Tevong, Yu, Ji-Young, Yu, Jiang-Hao, Zapp, Korinna, Zhang, Yongchao, Zhang, Yue, Zhou, Guanghui, Funchal, Renata Zukanovich, Abdul Khalek, Rabah, An, Di, Arakawa, Jason, Arduini, Gianluigi, Barman, Rahool Kumar, Beacom, John F., Bernlochner, Florian, Bishai, Mary, Boeckh, Tobias, Bortoletto, Daniela, Boveia, Antonio, Brenner, Lydia, Brodsky, Stanley J., Burgard, Carsten, Camargo-Molina, José Eliel, Carli, Tancredi, Chang, Spencer, Charitonidis, Nikolaos, Chen, Xin, Chen, Thomas Y., Chiang, Cheng-Wei, Coccaro, Andrea, Cohen, Timothy, Coleman, Alan, Conceição, Ruben, Cooper-Sarkar, Amanda, d'Onofrio, Monica, Davoudiasl, Hooman, Di Matteo, Armando, Di Valentino, Eleonora, Dmitrievsky, Sergey, Dobre, Radu, Doglioni, Caterina, Mendes, Luis M. Domingues, Dova, María Teresa, Duvernois, Michael A., Ekstedt, Andreas, Elsen, Eckhard, Escalante del Valle, Alberto, Essig, Rouven, Farrar, Glennys R., Fedynitch, Anatoli, Fellers, Deion, Firu, Elena, Galon, Iftah, Garcia Garcia, Isabel, da Silveira, Gustavo Gil, Giunti, Carlo, Gornushkin, Yury, Goldfarb, Steven, Goncalves, Dorival, Sevilla, Sergio Gonzalez, Gonzalez Suarez, Rebeca, Guler, A. Murat, Gwenlan, Claire, Gwilliam, Carl, Halzen, Francis, Han, Tao, Haungs, Andreas, Heeck, Julian, Hentschinski, Martin, Hsu, Shih-Chieh, Hu, Zhen, Huffman, B. Todd, Iacobucci, Giuseppe, Illana, Jose I., Insolia, Antonio, Ishak, Mustapha, Jaeckel, Joerg, Kabat, Daniel, Ken, Enrique Kajomovitz, Kanai, Takumi, Katori, Teppei, Khoze, Valery, Kotko, Piotr, Kribs, Graham D., Kuehn, Susanne, Kundu, Saumyen, Lee, Claire, Lek, Rafa L. Mase, Leszczynska, Agnieszka, Li, Lingfeng, Lie, Ki, Lillard, Benjamin, Lin, Huey-Wen, Lowette, Steven, Marfatia, Danny, López, Francisco Martínez, Masełek, Rafał, Masip, Manuel, Matchev, Konstantin, Mccauley, Thomas, Medina-Tanco, Gustavo, Menjo, Hiroaki, Miloi, Mˇadˇalina Mihaela, Miramonti, Lino, Mohlabeng, Gopolang, Moretti, Stefano, Moretti, Théo, Nath, Pran, Navarria, Francesco L., Neagu, Alina Tania, Nelles, Anna, Neuhaus, Friedemann, Nunez, Carlos, Ochoa-Ricoux, J. Pedro, Okui, Kazuaki, Olinto, Angela V., Onel, Yasar, de los Heros, Carlos Pérez, Pandini, Carlo, Pasechnik, Roman, Paul, Thomas C., Petersen, Brian A., Pierog, Tanguy, Plehn, Tilman, Plum, Matthias, Potamianos, Karolos, Preda, Titi, Prim, Markus, Queitsch-Maitland, Michaela, Reina, Laura, Reininghaus, Maximilian, Rizzo, Thomas G., Robens, Tania, Ruiz-Chóliz, Elisa, Schmieden, Kristof, Schnell, Gunar, Schott, Matthias, Schroeder, Frank G., Sfyrla, Anna, Shadmi, Yael, Shipsey, Ian, Shively, Savannah R., Shoemaker, Ian M., Vasina, Svetlana, Singh, Rajeev, Sousa, A., Muzio, Marco Stein, Stupak, John, Suarez, Indara, Tait, Tim M.P., Tata, Xerxes, Thottoli, Shafeeq Rahman, Toranosuke, Okumura, Torrence, Eric, Torres, Diego F., Trócsányi, Zoltán, Tricoli, Alessandro, Unger, Michael, Vázquez Sierra, Carlos, Valli, Mauro, Venters, Tonia, Verpoest, Stef, Vilela, Cristovao, Vormwald, Benedikt, Wang, Lian-Tao, Waterbury, Michael, Watts, Gordon, West, Stephen M., Xu, Tao, Yüksel, Emin, Yaeggy, Barbara, Yoon, Chun Sil, Yuan, Tianlu, Zgura, Ion Sorin, Groups, Snowmass Working, (Astro)-Particles Physics, Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Feng, Jonathan L, Kling, Felix, Reno, Mary Hall, Rojo, Juan, Soldin, Denni, Anchordoqui, Luis A, Boyd, Jamie, Ismail, Ahmed, Harland-Lang, Lucian, Kelly, Kevin J, Pandey, Vishva, Trojanowski, Sebastian, Tsai, Yu-Dai, Alameddine, Jean-Marco, Araki, Takeshi, Ariga, Akitaka, Ariga, Tomoko, Asai, Kento, Bacchetta, Alessandro, Balazs, Kincso, Barr, Alan J, Battistin, Michele, Bian, Jianming, Bertone, Caterina, Bai, Weidong, Bakhti, Pouya, Balantekin, A Baha, Barman, Basabendu, Batell, Brian, Bauer, Martin, Bauer, Brian, Becker, Mathia, Berlin, Asher, Bertuzzo, Enrico, Bhattacharya, Atri, Bonvini, Marco, Boogert, Stewart T, Boyarsky, Alexey, Bramante, Joseph, Brdar, Vedran, Carmona, Adrian, Casper, David W, Celiberto, Francesco Giovanni, Cerutti, Francesco, Chachamis, Grigorio, Chauhan, Garv, Citron, Matthew, Copello, Emanuele, Corso, Jean-Pierre, Darmé, Luc, D’Agnolo, Raffaele Tito, Darvishi, Neda, Das, Arindam, De Lellis, Giovanni, De Roeck, Albert, de Vries, Jordy, Dembinski, Hans P, Demidov, Sergey, Deniverville, Patrick, Denton, Peter B, Deppisch, Frank F, Dev, P S Bhupal, Di Crescenzo, Antonia, Dienes, Keith R, Diwan, Milind V, Dreiner, Herbi K, Du, Yong, Dutta, Bhaskar, Duwentäster, Pit, Elie, Lucie, Ellis, Sebastian A R, Enberg, Rikard, Farzan, Yasaman, Fieg, Max, Foguel, Ana Luisa, Foldenauer, Patrick, Foroughi-Abari, Saeid, Fortin, Jean-Françoi, Friedland, Alexander, Fuchs, Elina, Fucilla, Michael, Gallmeister, Kai, Garcia, Alfonso, García Canal, Carlos A, Garzelli, Maria Vittoria, Gauld, Rhorry, Ghosh, Sumit, Ghoshal, Anish, Gibson, Stephen, Giuli, Francesco, Gonçalves, Victor P, Gorbunov, Dmitry, Goswami, Srubabati, Grau, Silvia, Günther, Julian Y, Guzzi, Marco, Haas, Andrew, Hakulinen, Timo, Harris, Steven P, Harz, Julia, Helo Herrera, Juan Carlo, Hill, Christopher S, Hirsch, Martin, Hobbs, Timothy J, Höche, Stefan, Hryczuk, Andrzej, Huang, Fei, Inada, Tomohiro, Infantino, Angelo, Ismail, Ameen, Jacobsson, Richard, Jana, Sudip, Jeong, Yu Seon, Ježo, Toma, Jho, Yongsoo, Jodłowski, Krzysztof, Kalashnikov, Dmitry, Kärkkäinen, Timo J, Keppel, Cynthia, Kim, Jongkuk, Klasen, Michael, Klein, Spencer R, Ko, Pyungwon, Köhler, Dominik, Komatsu, Masahiro, Kovařík, Karol, Kulkarni, Suchita, Kumar, Jason, Kumar, Karan, Kuo, Jui-Lin, Krauss, Frank, Kusina, Aleksander, Laletin, Maxim, Le Roux, Chiara, Lee, Seung J, Lee, Hye-Sung, Lefebvre, Helena, Li, Jinmian, Li, Shuailong, Li, Yichen, Liu, Wei, Liu, Zhen, Lonjon, Mickael, Lyu, Kun-Feng, Maciula, Rafal, Abraham, Roshan Mammen, Masouminia, Mohammad R, Mcfayden, Josh, Mikulenko, Oleksii, Mohammed, Mohammed M A, Mohan, Kirtimaan A, Morfín, Jorge G, Mosel, Ulrich, Mosny, Martin, Muzakka, Khoirul F, Nadolsky, Pavel, Nakano, Toshiyuki, Nangia, Saurabh, Cornago, Angel Navascue, Nevay, Laurence J, Ninin, Pierre, Nocera, Emanuele R, Nomura, Takaaki, Nunes, Rui, Okada, Nobuchika, Olness, Fred, Osborne, John, Otono, Hidetoshi, Ovchynnikov, Maksym, Papa, Alessandro, Pei, Junle, Peon, Guillermo, Perez, Gilad, Pickering, Luke, Plätzer, Simon, Plestid, Ryan, Poddar, Tanmay Kumar, Quílez, Pablo, Rai, Mudit, Rajaee, Meshkat, Raut, Digesh, Reimitz, Peter, Resnati, Filippo, Rhode, Wolfgang, Richardson, Peter, Ritz, Adam, Rokujo, Hiroki, Roszkowski, Leszek, Ruhe, Tim, Ruiz, Richard, Sabate-Gilarte, Marta, Sandrock, Alexander, Sarcevic, Ina, Sarkar, Subir, Sato, Osamu, Scherb, Christiane, Schienbein, Ingo, Schulz, Holger, Schwaller, Pedro, Sciutto, Sergio J, Sengupta, Dipan, Shchutska, Lesya, Shimomura, Takashi, Silvetti, Federico, Sinha, Kuver, Sjöstrand, Torbjörn, Sobczyk, Jan T, Song, Huayang, Soriano, Jorge F, Soreq, Yotam, Stasto, Anna, Stuart, David, Su, Shufang, Su, Wei, Szczurek, Antoni, Tabrizi, Zahra, Takubo, Yosuke, Taoso, Marco, Thomas, Brook, Thonet, Pierre, Tuckler, Dougla, Sabio Vera, Agustin, Vincke, Heinz, Vishnudath, K N, Wang, Zeren Simon, Winkler, Martin W, Wu, Wenjie, Xie, Keping, Xu, Xun-Jie, You, Tevong, Yu, Ji-Young, Yu, Jiang-Hao, Zapp, Korinna, Zhang, Yongchao, Zhang, Yue, Zhou, Guanghui, Funchal, Renata Zukanovich, Khalek, Rabah Abdul, An, Di, Arakawa, Jason, Arduini, Gianluigi, Barman, Rahool Kumar, Beacom, John F, Bernlochner, Florian, Bishai, Mary, Boeckh, Tobia, Bortoletto, Daniela, Boveia, Antonio, Brenner, Lydia, Brodsky, Stanley J, Burgard, Carsten, Camargo-Molina, José Eliel, Carli, Tancredi, Chang, Spencer, Charitonidis, Nikolao, Chen, Xin, Chen, Thomas Y, Chiang, Cheng-Wei, Coccaro, Andrea, Cohen, Timothy, Coleman, Alan, Conceição, Ruben, Cooper-Sarkar, Amanda, D’Onofrio, Monica, Davoudiasl, Hooman, Di Matteo, Armando, Di Valentino, Eleonora, Dobre, Radu, Doglioni, Caterina, Domingues Mendes, Luis M, Dova, María Teresa, Duvernois, Michael A, Ekstedt, Andrea, Elsen, Eckhard, Escalante del Valle, Alberto, Essig, Rouven, Farrar, Glennys R, Fedynitch, Anatoli, Fellers, Deion, Firu, Elena, Galon, Iftah, Garcia, Isabel Garcia, Gil da Silveira, Gustavo, Giunti, Carlo, Goldfarb, Steven, Goncalves, Dorival, Sevilla, Sergio Gonzalez, Suarez, Rebeca Gonzalez, Guler, A Murat, Gwenlan, Claire, Gwilliam, Carl, Halzen, Franci, Han, Tao, Haungs, Andrea, Heeck, Julian, Hentschinski, Martin, Hsu, Shih-Chieh, Hu, Zhen, Huffman, B Todd, Iacobucci, Giuseppe, Illana, Jose I, Insolia, Antonio, Ishak, Mustapha, Jaeckel, Joerg, Kabat, Daniel, Ken, Enrique Kajomovitz, Kanai, Takumi, Katori, Teppei, Khoze, Valery, Kotko, Piotr, Kribs, Graham D, Kuehn, Susanne, Kundu, Saumyen, Lee, Claire, Leszczynska, Agnieszka, Li, Lingfeng, Lie, Ki, Lillard, Benjamin, Lin, Huey-Wen, Lowette, Steven, Marfatia, Danny, López, Francisco Martínez, Masełek, Rafał, Masip, Manuel, Matchev, Konstantin, Mccauley, Thoma, Medina-Tanco, Gustavo, Menjo, Hiroaki, Miloi, Mǎadǎlina Mihaela, Miramonti, Lino, Mohlabeng, Gopolang, Moretti, Stefano, Moretti, Théo, Nath, Pran, Navarria, Francesco L, Neagu, Alina Tania, Nelles, Anna, Neuhaus, Friedemann, Nunez, Carlo, Ochoa-Ricoux, J Pedro, Okui, Kazuaki, Olinto, Angela V, Onel, Yasar, Pérez de los Heros, Carlo, Pandini, Carlo, Pasechnik, Roman, Paul, Thomas C, Petersen, Brian A, Pierog, Tanguy, Plehn, Tilman, Plum, Matthia, Potamianos, Karolo, Preda, Titi, Prim, Marku, Queitsch-Maitland, Michaela, Reina, Laura, Reininghaus, Maximilian, Rizzo, Thomas G, Robens, Tania, Ruiz-Chóliz, Elisa, Schmieden, Kristof, Schnell, Gunar, Schott, Matthia, Schroeder, Frank G, Sfyrla, Anna, Shadmi, Yael, Shipsey, Ian, Shively, Savannah R, Shoemaker, Ian M, Singh, Rajeev, Sousa, A, Muzio, Marco Stein, Stupak, John, Suarez, Indara, Tait, Tim M P, Tata, Xerxe, Thottoli, Shafeeq Rahman, Toranosuke, Okumura, Torrence, Eric, Torres, Diego F, Trócsányi, Zoltán, Tricoli, Alessandro, Unger, Michael, Sierra, Carlos Vázquez, Valli, Mauro, Venters, Tonia, Verpoest, Stef, Vilela, Cristovao, Vormwald, Benedikt, Wang, Lian-Tao, Waterbury, Michael, Watts, Gordon, West, Stephen M, Xu, Tao, Yüksel, Emin, Yaeggy, Barbara, Yoon, Chun Sil, Yuan, Tianlu, and Zgura, Ion Sorin
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,engineering ,High Energy Physics - Experiment ,Subatomär fysik ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,Subatomic Physics ,CERN LHC Coll: upgrade ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Detectors and Experimental Techniques ,quantum chromodynamics, nonperturbative ,High Energy Astrophysical Phenomena (astro-ph.HE) ,neutrino, statistics ,energy: high ,new physics ,new physics: search for ,Physics ,neutrino: statistics ,neutrinos ,Instrumentation and Detectors (physics.ins-det) ,ATLAS ,High Energy Physics - Phenomenology ,CERN LHC Coll ,Large Hadron Collider ,energy, high ,astroparticle physics ,vertex: primary ,Astrophysics - High Energy Astrophysical Phenomena ,numerical calculations: Monte Carlo ,Particle Physics - Experiment ,Forward Physics Facility ,signature ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics and Astronomy ,p p: scattering ,Nuclear and High Energy Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,quantum chromodynamics: nonperturbative ,FOS: Physical sciences ,dark matter ,weak interaction ,neutrino: energy ,TeV ,ddc:530 ,new particle searches ,SDG 7 - Affordable and Clean Energy ,Particle Physics - Phenomenology ,scattering ,Accelerators and Storage Rings ,QCD ,forward production ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,vertex, primary ,p p: colliding beams ,acceptance ,new particle - Abstract
Acknowledgments We thank the participants of the FPF meetings and the Snowmass working groups for discussions that have contributed both directly and indirectly to this study. We gratefully acknowledge the invaluable support of the CERN Physics Beyond Colliders study group and the work of CERN technical teams related to civil engineering studies (SCE-DOD), safety discussions (HSE-OHS, HSE-RP, EP-DI-SO), integration (EN-ACE), and discussions on services (EN-CV, EN-EL, EN-AA) and simulations (SY-STI). The work by J Alameddine, W Rhode, T Ruhe, and A Sandrock has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Collaborative Research Center SFB 876 and SFB 1491. L A Anchordoqui is supported by the US National Science Foundation (NSF) Grant PHY-2112527. T Araki is supported by JP18H01210. A Ariga is supported by JSPS KAKENHI Grant JP20K23373 and the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (Grant 101002690). T Ariga acknowledges support from JSPS KAKENHI Grant JP19H01909. K Asai is supported by JSPS KAKENHI Grant JP19J13812 and JP21K20365. A Bacchetta and F G Celiberto acknowledge support from the INFN/NINPHA project. P Bakhti and M Rajaee are supported by the National Research Foundation of Korea (NRF-2020R1I1A3072747). B Barman received funding from the Patrimonio Autónomo—Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (MinCiencias—Colombia) Grant 80740-465-2020 and the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 860881-HIDDeN. The work of B Batell is supported by the US Department of Energy (DOE) Grant DE–SC0007914. The work of A Berlin, T J Hobbs, S Hoeche, and J G Morfín was supported by the Fermi National Accelerator Laboratory (Fermilab), a US DOE, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract DE-AC02-07CH11359. M Becker, E Copello and J Harz acknowledge support from the DFG Emmy Noether Grant HA 8555/1-1. E Copello acknowledges also support from the DFG Collaborative Research Centre 'Neutrinos and Dark Matter in Astro- and Particle Physics' (SFB 1258). E Bertuzzo acknowledges financial support from FAPESP Contracts 2015/25884-4 and 2019/15149-6 and is indebted to the Theoretical Particle Physics and Cosmology group at King's College London for hospitality. The work of J Bian and W Wu is supported in part by US DOE Grant DE-SC0009920 and Heising-Simons Foundation Grant 2022-3319. The work of A Boyarsky and M Ovchynnikov is supported by the ERC under the European Union's Horizon 2020 Research and Innovation Programme (GA 694896). A Carmona acknowledges funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 754446 and UGR Research and Knowledge Transfer Found—Athenea3i. A Carmona also acknowledges partial support by the Ministry of Science and Innovation and SRA (10.13039/501100011033) Grant PID2019-106087GB-C22 and by the Junta de Andalucía Grant A-FQM-472-UGR20. F G Celiberto thanks the Università degli Studi di Pavia for the warm hospitality. The work of G Chachamis was supported by the Fundação para a Ciência e a Tecnologia (Portugal) under Project CERN/FIS-PAR/0024/2019 and Contract 'Investigador auxiliar FCT—Individual Call/03216/2017'. The work of M Citron and D Stuart is supported by US DOE Grant DE-SC0011702. The work of L Darme is supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement 101028626. P B Denton acknowledges support from the US DOE Grant Contract DE-SC0012704. The work of P S Bhupal Dev was supported in part by the US DOE Grant DE-SC0017987. The research activities of K R Dienes were supported in part by the US DOE Grant DE-FG02-13ER41976/DE-SC0009913 and also by the US NSF through its employee IR/D program. M V Diwan acknowledges support from the US DOE Grant Contract DE-SC0012704. Y Du and J H Yu are supported in part by National Key Research and Development Program of China Grant 2020YFC2201501, and the National Science Foundation of China (NSFC) under Grants 12022514, 11875003 and 12047503, and CAS Project for Young Scientists in Basic Research YSBR-006, and the Key Research Program of the CAS Grant XDPB15. The work of B Dutta and S Ghosh are supported in part by the US DOE Grant DE-SC0010813. The work of S Ghosh is also supported in part by National Research Foundation of Korea (NRF)'s Grants, Grant 6N021413. Y Farzan has received financial support from Saramadan Contract ISEF/M/400279 as well as from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement 860881-HIDDeN. The work of J L Feng is supported in part by US NSF Grants PHY-1915005 and PHY-2111427, Simons Investigator Award #376204, Simons Foundation Grant 623683, and Heising-Simons Foundation Grants 2019-1179 and 2020-1840. M Fieg is supported in part by US NSF Grant PHY-1915005 and by NSF Graduate Research Fellowship Award DGE-1839285. A L Foguel is supported by FAPESP Contract 2020/00174-2. The work of P Foldenauer is supported by the UKRI Future Leaders Fellowship DARKMAP. The work of S Foroughi-Abari and A Ritz is supported in part by NSERC, Canada. The work of J-F Fortin is supported in part by NSERC, Canada. A Friedland is supported by the US DOE Grant DE-AC02-76SF00515. E Fuchs acknowledges support by the DFG Germany's Excellence Strategy—EXC-2123 'QuantumFrontiers'—390837967. M Fucilla, M M A Mohammed, and A Papa acknowledge support from the INFN/QFT@COLLIDERS project. A Garcia acknowledges support from the European Union's H2020-MSCA Grant Agreement 101025085. C A García Canal and S J Sciutto acknowledge support from CONICET and ANPCyT M V Garzelli acknowledges support the from German BMBF Contract 05H21GUCCA. V P Goncalves was partially financed by the Brazilian funding agencies CNPq, CAPES, FAPERGS and INCT-FNA (Process Number 464898/2014-5). S Goswami acknowledges the J C Bose Fellowship (JCB/2020/000011) of Science and Engineering Research Board of Department of Science and Technology, Government of India. The work of M Guzzi is supported by US NSF Grant PHY-2112025. L Harland-Lang thanks the Science and Technology Facilities Council (STFC) for support via Grant Award ST/L000377/1. The work of S P Harris is supported by the US DOE Grant DE-FG02-00ER41132 as well as the US NSF Grant PHY-1430152 (JINA Center for the Evolution of the Elements). J C Helo acknowledge support from Grant ANID FONDECYT-Chile 1201673 and ANID—Millennium Science Initiative Program ICN2019-044. The work of M Hirsch is supported by the Spanish Grants PID2020-113775GB-I00 (AEI/10.13039/501100011033) and PROMETEO/2018/165 (Generalitat Valenciana). The work of A Hryczuk and M Laletin is supported by the National Science Centre, Poland, research Grant 2018/31/D/ST2/00813. The research activities of F Huang are supported by the International Postdoctoral Exchange Fellowship Program and in part by US NSF Grant PHY-1915005. A Ismail is supported by NSERC (Reference Number 557763) and by US NSF Grant PHY-2014071. Y S Jeong acknowledges support from the National Research Foundation of Korea (NRF) grant funded by the Korea government through Ministry of Science and ICT Grant 2021R1A2C1009296. K Jodlowski and L Roszkowski are supported by the National Science Centre, Poland, research Grant 2015/18/A/ST2/00748. S R Klein is supported in part by the US NSF Grant PHY-1307472 and the US DOE Contract DE-AC-76SF00098. F Kling and P Quílez are supported by the DFG under Germany's Excellence Strategy—EXC 2121 Quantum Universe—390833306. P Ko is supported in part by KIAS Individual Grant PG021403 and by National Research Foundation of Korea (NRF) Grant NRF-2019R1A2C3005009. S Kulkarni is supported by the Austrian Science Fund Elise-Richter Grant V592-N27. The work of J Kumar is supported in part by US DOE Grant DE-SC0010504. J-L Kuo is supported by US NSF Theoretical Physics Program, Grant PHY-1915005. The work of C Le Roux and K Zapp is part of a project that has received funding from the ERC under the European Union's Horizon 2020 Research and Innovation Programme (Grant Agreement 803183, collectiveQCD). The work of H-S Lee was supported in part by the National Research Foundation of Korea (NRF-2021R1A2C2009718). S J Lee was supported by the Samsung Science and Technology Foundation. Ji Li is supported by the National Natural Science Foundation of China Grant 11905149. K-F Lyu and Z Liu are supported in part by the US DOE Grant DE-SC0022345. The work of R Maciula and A Szczurek was partially supported by the Polish National Science Centre under Grant 2018/31/B/ST2/03537. R Mammen Abraham and A Ismail acknowledge support from the US DOE Grant DE-SC0016013. M R Masouminia is supported by the UK Science and Technology Facilities Council (Grant ST/P001246/1). The work of J McFayden was supported by the Royal Society Fellowship Grant URF R1 201519. The work of O Mikulenko is supported by the NWO Physics Vrij Programme 'The Hidden Universe of Weakly Inter-acting Particles' with Project Number 680.92.18.03 (NWO Vrije Programma), which is (partly) financed by the Dutch Research Council (NWO). P Nadolsky and F Olness acknowledge support through US DOE Grant DE-SC0010129. E R Nocera thanks the STFC for support by the Grant Awards ST/P000630/1and ST/T000600/1. The work of N Okada is supported by the US DOE Grant DE-SC0012447. V Pandey acknowledges the support from US DOE Grant DE-SC0009824. The work of D Raut is supported by the US DOE Grant DE-SC0013880. P Reimitz acknowledges financial support from FAPESP Contract 2020/10004-7. M H Reno is supported in part by US DOE Grant DE-SC-0010113. The work of J Rojo is partly supported by the Dutch Research Council (NWO). L Roszkowski and S Trojanowski are supported by the grant 'AstroCeNT: Particle Astrophysics Science and Technology Centre' carried out within the International Research Agendas programme of the Foundation for Polish Science financed by the European Union under the European Regional Development Fund. S Trojanowski is also supported in part by the Polish Ministry of Science and Higher Education through its scholarship for young and outstanding scientists (Decision No. 1190/E-78/STYP/14/2019). S Trojanowski is also supported in part from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 952480 (DarkWave 24 project). I Sarcevic is supported by US DOE Grant DOE DE-SC-0009913. The work of L Shchutska is supported by the ERC under the European Union's Horizon 2020 Research and Innovation Programme (GA 758316). The work of T Shimomura is supported by JSPS KAKENHI Grants JP18H01210, JP18K03651, and MEXT KAKENHI Grant JP18H05543. The work of K Sinha is supported in part by US DOE Grant DE-SC0009956. The work of T Sjöstrand is supported by the Swedish Research Council, Contract 2016-05996. J T Sobczyk acknowledges support from NCN Grant UMO-2021/41/B/ST2/02778. D Soldin acknowledges support from the US NSF Grant PHY-1913607. H Song is supported by the International Postdoctoral Exchange Fellowship Program. Y Soreq is supported by grants from the NSF-BSF, BSF, the ISF and by the Azrieli foundation. A Stasto acknowledges support from US DOE Grant DE-SC-0002145. S Su is supported by the US DOE Grant DE-FG02-13ER41976/DE-SC0009913. W Su is supported by a KIAS Individual Grant (PG084201) at Korea Institute for Advanced Study. Y Takubo is supported by JP20K04004. M Taoso acknowledges support from the INFN Grant 'LINDARK', the research grant 'The Dark Universe: A Synergic Multimessenger Approach 2017X7X85' funded by MIUR, and the project 'Theoretical Astroparticle Physics (TAsP)' funded by the INFN. The research activities of B Thomas are supported in part by US NSF Grant PHY-2014104. The work of Y-D Tsai is supported in part by US NSF Grant PHY-1915005. The work of A Sabio Vera has been supported by the Spanish Research Agency (Agencia Estatal de Investigación) through the Grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597, by the Spanish Government Grant FPA2016-78022-P and from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement 824093. The work of Yongchao Zhang is supported by the National Natural Science Foundation of China Grant 12175039, the 2021 Jiangsu Shuangchuang (Mass Innovation and Entrepreneurship) Talent Program JSSCBS20210144, and the 'Fundamental Research Funds for the Central Universities'. Yue Zhang is supported by the Arthur B McDonald Canadian Astroparticle Physics Research Institute. R Zukanovich Funchal is partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Ciência e Tecnologia (CNPq). The opinions and conclusions expressed herein are those of the authors and do not represent any funding agencies., High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential., German Research Foundation (DFG) SFB 876 SFB 1491, National Science Foundation (NSF) PHY2112527, Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (KAKENHI) JP18H01210 JSPS KAKENHI JP20K23373 JP19H01909 JSPS KAKENHI JP19J13812 JP21K20365 JSPS KAKENHI JP18K03651, European Research Council (ERC) 101002690, National Research Foundation of Korea NRF-2020R1I1A3072747, Patrimonio Autónomo-Fondo Nacional de Financiamiento para la Ciencia Tecnología y la Innovación Francisco José de Caldas (MinCiencias-Colombia) 80740-465-2020, European Commission Joint Research Centre 860881-HIDDeN European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant 754446, United States Department of Energy (DOE) DE-SC0007914, Fermi National Accelerator Laboratory (Fermilab), a US DOE, Office of Science, HEP User Facility, Fermi Research Alliance, LLC (FRA) DE-AC02-07CH11359, German Research Foundation (DFG) HA 8555/1-1, DFG Collaborative Research Centre 'Neutrinos and Dark Matter in Astro-and Particle Physics' SFB 1258, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) 2015/25884-4 2019/15149-6, United States Department of Energy (DOE) DE-SC0009920, Heising-Simons Foundation 2022-3319 2019-1179 2020-1840, ERC under the European Union's Horizon 2020 Research and Innovation Programme 694896 803183, UGR Research and Knowledge Transfer Found-Athenea3i, Ministry of Science and Innovation, Spain (MICINN) Spanish Government, SRA Grant PID2019-106087GB-C22, Junta de Andalucía A-FQM-472-UGR20, Fundacao para a Ciencia e a Tecnologia (FCT) CERN/FIS-PAR/0024/2019 03216/2017, United States Department of Energy (DOE) DE-SC0011702 DE-SC0017987 DE-FG02-13ER41976/DE-SC0009913 DE-SC0012704 DE-SC0010813 DE-AC02-76SF00515 DE-FG02-00ER41132 DE-AC-76SF00098 DE-SC0010504 DE-SC0022345 DE-SC0010129, US NSF through its employee IR/D program, National Key Research and Development Program of China 2020YFC2201501, National Natural Science Foundation of China (NSFC) 12022514 11875003 12047503, CAS Project for Young Scientists in Basic Research YSBR-006, Key Research Program of the CAS XDPB15, National Research Foundation of Korea (NRF)'s Grants 6N021413, Saramadan Contract ISEF/M/400279, National Science Foundation (NSF) PHY-1915005 PHY-2111427 PHY1430152 PHY-2014071 PHY-1307472 PHY-2014104, Simons Investigator Award 376204, Simons Foundation 623683, National Science Foundation (NSF) DGE-1839285, FAPESP Contract 2020/00174-2, UKRI Future Leaders Fellowship DARKMAP, Natural Sciences and Engineering Research Council of Canada (NSERC), German Research Foundation (DFG) EXC-2123 390837967, INFN/QFT@COLLIDERS project, European Union's H2020-MSCA Grant Agreement 101025085, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), ANPCyT, Federal Ministry of Education & Research (BMBF) 05H21GUCCA, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Fundacao de Amparo a Ciencia e Tecnologia do Estado do Rio Grande do Sul (FAPERGS), INCT-FNA 464898/2014-5, J C Bose Fellowship of Science and Engineering Research Board of Department of Science and Technology, Government of India JCB/2020/000011, National Science Foundation (NSF) PHY-2112025, UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC) Science and Technology Development Fund (STDF) ST/L000377/1, Grant ANID FONDECYT-Chile 1201673, ANID-Millennium Science Initiative Program ICN2019-044, Spanish Grant (AEI) PID2020-113775GBI00, Center for Forestry Research & Experimentation (CIEF) PROMETEO/2018/165, National Science Centre, Poland 2018/31/D/ST2/00813, International Postdoctoral Exchange Fellowship Program, KIAS Individual Grant PG021403, National Research Foundation of Korea NRF-2019R1A2C3005009, Austrian Science Fund Elise-Richter Grant V592-N27, US NSF Theoretical Physics Program PHY-1915005, Samsung, National Natural Science Foundation of China (NSFC) 11905149, Polish National Science Centre 2018/31/B/ST2/03537, UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC) ST/P001246/1, Royal Society of London URF R1 201519, Netherlands Organization for Scientific Research (NWO) 680.92.18.03 Physics Vrij Programme .The Hidden Universe of Weakly Inter-acting Particles' - Dutch Research Council (NWO), UK Research & Innovation (UKRI) Science & Technology Facilities Council (STFC) ST/T000600/1 ST/P000630/1, Netherlands Organization for Scientific Research (NWO), European Union under the European Regional Development Fund, Polish Ministry of Science and Higher Education through its scholarship for young and outstanding scientists 1190/E-78/STYP/14/2019, European Commission 952480, ERC under the European Union 758316, Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) JP18H05543 MEXT KAKENHI, Swedish Research Council 2016-05996, NCN UMO-2021/41/B/ST2/02778, NSF-BSF, US-Israel Binational Science Foundation, Israel Science Foundation, Azrieli foundation, KIAS Individual Grant at Korea Institute for Advanced Study PG084201, Istituto Nazionale di Fisica Nucleare (INFN), Ministry of Education, Universities and Research (MIUR) 2017X7X85', Spanish Government SEV-2016-0597 Spanish Research Agency (Agencia Estatal de Investigacion) through the Grant IFT Centro de Excelencia Severo Ochoa FPA2016-78022-P, European Union's Horizon 2020 Research and Innovation Programme 824093, National Natural Science Foundation of China (NSFC) 12175039, 2021 Jiangsu Shuangchuang (Mass Innovation and Entrepreneurship) Talent Program JSSCBS20210144, Fundamental Research Funds for the Central Universities, Arthur B McDonald Canadian Astroparticle Physics Research Institute, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), United States Department of Energy (DOE) DE-SC0012447 DE-SC0009824 DE-SC0013880 :The US DOE DE-SC-0010113 DOE DE-SC-0009913 US DOE DE-SC0009956 DE-FG02-13ER41976/DESC0009913 US DOE JP20K04004
- Published
- 2023
- Full Text
- View/download PDF
25. Fundamental physics with blazar spectra: a critical appraisal
- Author
-
Giorgio Galanti, Marco Landoni, and Fabrizio Tavecchio
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Physics beyond the Standard Model ,FOS: Physical sciences ,HEGRA ,Astronomy and Astrophysics ,Elementary particle ,Astrophysics ,Cherenkov Telescope Array ,Redshift ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Space and Planetary Science ,Spectral energy distribution ,Astrophysics - High Energy Astrophysical Phenomena ,Blazar - Abstract
Very-high-energy (VHE) BL Lac spectra extending above $10 \, \rm TeV$ provide a unique opportunity for testing physics beyond the standard model of elementary particle and alternative blazar emission models. We consider the hadron beam, the photon to axion-like particle (ALP) conversion, and the Lorentz invariance violation (LIV) scenarios by analyzing their consequences and induced modifications to BL Lac spectra. In particular, we consider how different processes can provide similar spectral features (e.g. hard tails) and we discuss the ways they can be disentangled. We use HEGRA data of a high state of Markarian 501 and the HESS spectrum of the extreme BL Lac (EHBL) 1ES 0229+200. In addition, we consider two hypothetical EHBLs similar to 1ES 0229+200 located at redshifts $z=0.3$ and $z=0.5$. We observe that both the hadron beam and the photon-ALP oscillations predict a hard tail extending to energies larger than those possible in the standard scenario. Photon-ALP interaction predicts a peak in the spectra of distant BL Lacs at about $20-30 \, \rm TeV$, while LIV produces a strong peak in all BL Lac spectra around $\sim 100 \, \rm TeV$. The peculiar feature of the photon-ALP conversion model is the production of oscillations in the spectral energy distribution, so that its detection/absence can be exploited to distinguish among the considered models. The above mentioned features coming from the three models may be detected by the upcoming Cherenkov Telescope Array (CTA). Thus, future observations of BL Lac spectra could eventually shed light about new physics and alternative blazar emission models, driving fundamental research towards a specific direction., Comment: 10 pages, 7 figures, revised version submitted to MNRAS
- Published
- 2019
26. NUCLEON-2 mission for the investigation of isotope and charge composition of cosmic ray ions
- Author
-
Alexander D. Panov, V. Bulatov, D. Karmanov, D. Podorozhny, P. Tkatchev, S. Fillippov, O. Vasiliev, A. Kurganov, L. Tkatchev, Andrey Turundaevskiy, D. Polkov, I. Kovalev, and Mikhail Panasyuk
- Subjects
Astroparticle physics ,Physics ,Atmospheric Science ,Range (particle radiation) ,010504 meteorology & atmospheric sciences ,Isotope ,Nuclear Theory ,Resolution (electron density) ,Aerospace Engineering ,Isotopes of argon ,Astronomy and Astrophysics ,Cosmic ray ,01 natural sciences ,Ion ,Nuclear physics ,Geophysics ,Space and Planetary Science ,0103 physical sciences ,General Earth and Planetary Sciences ,Nuclear Experiment ,Nucleon ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
The NUCLEON-2 experiment is aimed at the investigation of isotope and charge composition of medium, heavy and ultra-heavy ions ( Z 82 ) in the 300 MeV/N - 1 GeV/N energy range. The concept design of HICRS for the NUCLEON-2 satellite cosmic ray experiment is presented. The performed simulation confirms the isotope resolution algorithms and techniques. Argon isotopes’ resolution in the NUCLEON-2 prototype is presented.
- Published
- 2019
27. Newtonian Gravity
- Author
-
Richard Fitzpatrick
- Subjects
Astroparticle physics ,Physics ,Gravity (chemistry) ,Theoretical physics ,Newtonian fluid ,Solar physics ,Celestial mechanics - Published
- 2021
28. BAYESIAN ANALYSIS OF COSMIC RAY PROPAGATION: EVIDENCE AGAINST HOMOGENEOUS DIFFUSION
- Author
-
Aaron C. Vincent, T. A. Porter, Michael P. Hobson, Gudlaugur Johannesson, Elena Orlando, Roberto Ruiz de Austri, Igor V. Moskalenko, Roberto Trotta, Farhan Feroz, P. B. Graff, Andrew W. Strong, Johannesson, G, de Austri, Rr, Vincent, Ac, Moskalenko, Iv, Orlando, E, Porter, Ta, Strong, Aw, Trotta, R, Feroz, F, Graff, P, Hobson, Mp, Science and Technology Facilities Council (STFC), Science and Technology Facilities Council [2006-2012], and Science and Technology Facilities Council
- Subjects
astroparticle physics ,cosmic rays ,diffusion ,Galaxy: general ,ISM: general ,methods: statistical ,Parameter space ,01 natural sciences ,Diffusion (business) ,010303 astronomy & astrophysics ,cosmic ray ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,astro-ph.HE ,0306 Physical Chemistry (incl. Structural) ,SUPERNOVA-REMNANTS ,general [ISM] ,SECONDARY ,ELEMENTAL COMPOSITION ,astroparticle physic ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,Astrophysics - High Energy Astrophysical Phenomena ,Bar (music) ,astro-ph.GA ,Bayesian probability ,statistical [methods] ,FOS: Physical sciences ,Cosmic ray ,FERMI-LAT OBSERVATIONS ,Astronomy & Astrophysics ,Article ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,0201 Astronomical and Space Sciences ,Calibration ,ENERGY-SPECTRA ,Nested sampling algorithm ,general [Galaxy] ,Science & Technology ,NUCLEI ,010308 nuclear & particles physics ,CONSTRAINTS ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Computational physics ,Interstellar medium ,MODEL ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,SOLAR MODULATION ,EMISSION - Abstract
We present the results of the most complete ever scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine learning package. This is the first such study to separate out low-mass isotopes ($p$, $\bar p$ and He) from the usual light elements (Be, B, C, N, O). We find that the propagation parameters that best fit $p$, $\bar p$, He data are significantly different from those that fit light elements, including the B/C and $^{10}$Be/$^9$Be secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update., Comment: 20 pages, 10 figures, 5 tables. v2 accepted for publication in ApJ
- Published
- 2021
29. The analysis strategy for the measurement of the electron flux with CALET on the International Space Station
- Author
-
L. Pacini, Sandro Gonzi, Yosui Akaike, and Eugenio Berti
- Subjects
Astroparticle physics ,Physics ,Nuclear physics ,Positron ,Proton ,Calorimeter (particle physics) ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Cosmic ray ,Electron ,Nucleon - Abstract
The CALorimetric Electron Telescope (CALET), operating aboard the International Space Station since October 2015, is an experiment dedicated to high-energy astroparticle physics. The primary scientific goal of the experiment is the measurement of the electron+positron flux up to the multi-TeV region, which can provide unique information on the presence of nearby astrophysical sources and possible signals from dark matter. Other important goals are the ones relative to the flux of nuclear species from proton to iron up to tens of TeV/nucleon and to gamma-ray astronomy up to a few TeV. In order to accomplish these tasks, the CALET instrument was carefully designed exploiting a calorimeter solution composed by three detectors: CHarge Detector (CHD), IMaging Calorimeter (IMC) and Total AbSorption Calorimeter (TASC). This geometry allows for an excellent electromagnetic shower energy resolution (2%), a very high proton rejection factor ($10^5$) and a relatively large geometric factor ($\mathrm{0.1~m^2 sr}$). In this contribution, we present the analysis strategy employed for the measurement of the electron+positron flux, which is divided in two main steps. The first step consists of a group of selections to obtain a sample of well reconstructed candidates, removing particles outside the detector acceptance and particles with a charge Z>1, while keeping a high selection efficiency for electrons. The second step consists of a final rejection to remove the residual proton background: this is the most crucial point of the analysis since in cosmic rays protons are more abundant than electrons by a factor 100-1000. Proton rejection is performed using two different methodologies. We will demonstrate that, at low energies, it is enough to use a simple single cut that makes use of the reconstructed longitudinal and lateral profile, whereas, at high energies, it is necessary to use a more powerful cut that combines all detector information by the use of a multivariate analysis technique. Finally, we will show that this rejection algorithm leads to very stable performances at all energies, strongly reducing the impact of the associated uncertainty, which is the main source of systematic uncertainty in the high energy region.
- Published
- 2021
30. Latin American Strategy for Research Infrastructures for High Energy, Cosmology, Astroparticle Physics LASF4RI for HECAP
- Author
-
Alfonso Zerwekh and Diego Alejandro Restrepo Quintero
- Subjects
Astroparticle physics ,High energy ,Latin Americans ,Political science ,Regional science ,Cosmology - Published
- 2021
31. High-energy Gamma Rays from the Milky Way: Three-dimensional Spatial Models for the Cosmic-Ray and Radiation Field Densities in the Interstellar Medium
- Author
-
Igor V. Moskalenko, T. A. Porter, and Gudlaugur Johannesson
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,Spiral galaxy ,010308 nuclear & particles physics ,Milky Way ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Galaxy ,Article ,Luminosity ,Interstellar medium ,Space and Planetary Science ,0103 physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Fermi Gamma-ray Space Telescope - Abstract
High-energy gamma rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D Galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degree scales indicating the need to include the details of the Galactic spiral structure and thus require 3D spatial modelling. In this paper the high-energy interstellar emissions from the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disc or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy gamma-ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the non-thermal interstellar emissions from the Galaxy., 23 pages, 14 figures, 1 appendix. ApJ in press
- Published
- 2021
32. Micro-pattern gaseous detectors in high-energy and astroparticle physics
- Author
-
Fabio Sauli
- Subjects
Astroparticle physics ,Physics ,Nuclear physics ,Gaseous detectors ,Nuclear and High Energy Physics ,High energy ,Gas electron multiplier ,Astronomy and Astrophysics ,MicroMegas detector ,Atomic and Molecular Physics, and Optics ,Micro pattern ,Ionizing radiation - Abstract
Introduced in the late 70s of the last century, a new generation of position-sensitive sensors named micro-pattern gaseous detectors (MPGDs) allows to detect and localize ionizing radiation with sub-mm accuracy and high-rate capability. Performing and reliable, MPGDs are gradually replacing detection systems based on multiwire proportional chambers, and find applications in particle physics, astrophysics, plasma diagnostics and other fields.
- Published
- 2021
33. New Results from the first 5 years of CALET observations on the International Space Station
- Author
-
Pier Simone Marrocchesi
- Subjects
Astroparticle physics ,Physics ,Telescope ,Positron ,Gravitational wave ,law ,Astrophysics::High Energy Astrophysical Phenomena ,International Space Station ,Dark matter ,Gamma ray ,Astronomy ,LIGO ,law.invention - Abstract
The CALorimetric Electron Telescope (CALET), developed and operated by Japan in collaboration with Italy and the United States, is a high-energy astroparticle physics experiment installed on the International Space Station (ISS). Its mission goals include investigating the possible presence of nearby sources of high-energy electrons, performing direct measurements of observables sensitive to the details of the acceleration and propagation of galactic particles, and detecting potential dark matter signatures. CALET measures the cosmic-ray electron+positron flux up to 20 TeV, gamma rays up to 10 TeV, and nuclei up to 1 PeV. Charge measurements cover from Z=1 to 40 allowing to study the more abundant elements and to extend the range of long-term observations above iron. CALET is collecting science data on the International Space Station since October 2015 with excellent and continuous performance with no major interruptions. Approximately 20 million triggered events per month are recorded with energies > 10 GeV. Here, we present the highlights of CALET observations carried out during the first 5.5 years of operation, including the electron+positron energy spectrum, the spectra of protons and other nuclei, gamma-ray observations, as well as the characterization of on-orbit performance. Results on the electromagnetic counterpart search for LIGO/Virgo gravitational wave events and the observations of solar modulation and gamma-ray bursts are also included.
- Published
- 2021
34. Particle Astrophysics: Gamma Ray, Cosmic Ray, and Neutrino Astronomy
- Author
-
Nicholas F. H Tothill and Miroslav Filipovic
- Subjects
Astroparticle physics ,Physics ,Gamma ray ,Cosmic ray ,Astrophysics ,Neutrino astronomy - Published
- 2021
35. The importance of Fe fragmentation for LiBeB analyses
- Author
-
Yoann Genolini, Laurent DEROME, Manuela Vecchi, David Maurin, Eduardo Ferronato Bueno, and Astronomy
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,LIQUID-HYDROGEN TARGET ,HIGH-ENERGY ,abundances ,LOCAL INTERSTELLAR SPECTRA ,diffusion ,NOBLE-GAS ISOTOPES ,PAR DES PROTONS ,nucleosynthesis ,FOS: Physical sciences ,Astronomy and Astrophysics ,PRODUCTION CROSS-SECTIONS ,CALORIMETRIC ELECTRON TELESCOPE ,PROTON-INDUCED REACTIONS ,astroparticle physics ,Space and Planetary Science ,LIGHT-ELEMENTS LITHIUM ,Nuclear Experiment (nucl-ex) ,Astrophysics - High Energy Astrophysical Phenomena ,Nuclear Experiment ,nuclear reactions ,GALACTIC COSMIC-RAYS - Abstract
High-precision data from AMS-02 on Li, Be, and B provide the best constraints on Galactic cosmic-ray transport parameters. We re-evaluate the impact of Fe fragmentation on the Li, Be, and B modelling. We discuss the consequences on the transport parameter determination and reassess whether a primary source of Li is needed to match AMS-02 data. We renormalised several cross-section parametrisations to existing data for the most important reactions producing Li, Be, and B. We used the USINE code with these new cross-section sets to re-analyse Li/C, Be/C, and B/C AMS-02 data. We built three equally plausible cross-section sets. Compared to the initial cross-section sets, they lead to an average enhanced production of Li ($\sim20-50\%$) and Be ($\sim5-15\%$), while leaving the B flux mostly unchanged. In particular, Fe fragmentation is found to contribute to up to 10\% of the Li and Be fluxes. Used in the combined analysis of AMS-02 Li/C, Be/C, and B/C data, the fit is significantly improved, with an enhanced diffusion coefficient ($\sim 20\%)$. The three updated cross-section sets are found to either slightly undershoot or overshoot the Li/C and B/C ratios: this strongly disfavours evidence for a primary source of Li in cosmic rays. We stress that isotopic cosmic-ray ratios of Li (and to a lesser extent Be), soon to be released by AMS-02, are also impacted by the use of these updated sets. Almost no nuclear data exist for the production of Li and B isotopes from Ne, Mg, Si, and Fe, whereas these reactions are estimated to account for $\sim 20\%$ of the total production. New nuclear measurements would be appreciated and help to better exploit the high-precision AMS-02 cosmic-ray data., Comment: 20 pages, 16 figures, 2 tables (matches accepted A&A version): corrected sign for $\delta_l$ (typo in plotting script) + couple of sentences added (XS modelling, results for various propagation configurations)
- Published
- 2022
36. A simple determination of the halo size from10Be/9Be data
- Author
-
D. Maurin, E. Ferronato Bueno, L. Derome, and Astronomy
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Diffusion ,Space and Planetary Science ,FOS: Physical sciences ,Methods: Analytical ,Astronomy and Astrophysics ,Astroparticle physics ,Astrophysics - High Energy Astrophysical Phenomena ,Cosmic rays ,Galaxy: halo - Abstract
The AMS-02 and HELIX experiments should soon provide $\mathrm{^{10}Be/^9Be}$ cosmic-ray data of unprecedented precision. We propose an analytical formula to quickly and accurately determine $L$ from these data. Our formula is validated against the full calculation performed with the propagation code \usine{}. We compare the constraints on $L$ set by Be/B and $\mathrm{^{10}Be/^9Be}$, relying on updated sets of production cross-sections. The best-fit $L$ from AMS-02 Be/B data is shifted from 5 kpc to 3.8 kpc when using the updated cross-sections. We obtained consistent results from the Be/B analysis with USINE, $L=3.8^{+2.8}_{-1.6}$ kpc (data and cross-section uncertainties), and from the analysis of $\mathrm{^{10}Be/^9Be}$ data with the simplified formula, $L=4.7\pm0.6$ (data uncertainties) $\pm2$ (cross-section uncertainties) kpc. The analytical formula indicates that improvements on $L$ thanks to future data will be limited by production cross-section uncertainties, unless either $\mathrm{^{10}Be/^9Be}$ measurements are extended up to several tens of GeV/n, or nuclear data for the production of $\mathrm{^{10}Be}$ and $\mathrm{^9Be}$ are improved; new data for the production cross-section of $\mathrm{^{16}O}$ into Be isotopes above a few GeV/n are especially desired., 9 pages, 2 tables, 5 figures (matches accepted A&A version): comparison to [De21] moved to appendix (also highlight impact of reacceleration)
- Published
- 2022
37. The Partonic Content of Nucleons and Nuclei
- Author
-
Juan Rojo
- Subjects
Quark ,Astroparticle physics ,Physics ,Quantum chromodynamics ,Particle physics ,High Energy Physics::Phenomenology ,Nuclear Theory ,Hadron ,Gluon ,Higgs boson ,High Energy Physics::Experiment ,Neutrino ,Nuclear Experiment ,Nucleon - Abstract
Deepening our knowledge of the partonic content of nucleons and nuclei represents a central endeavour of modern high-energy and nuclear physics, with ramifications in related disciplines such as astroparticle physics. There are two main scientific drivers motivating these investigations of the partonic structure of hadrons. On the one hand, addressing fundamental open issues in our understanding in the strong interactions such as the origin of the nucleon mass, spin, and transverse structure; the presence of heavy quarks in the nucleon wave function; and the possible onset of novel gluon-dominated dynamical regimes. On the other hand, pinning down with the highest possible precision the substructure of nucleons and nuclei is a central component for theoretical predictions in a wide range of experiments, from proton and heavy ion collisions at the Large Hadron Collider to ultra-high energy neutrino interactions at neutrino telescopes. This Article presents a succinct non-technical overview of our modern understanding of the quark, gluon, and photon substructure of nucleons and nuclei, focusing on recent trends and results and discussing future perspectives for the field.
- Published
- 2021
38. Large radio arrays for the detection of cosmic particles
- Author
-
Anna Nelles
- Subjects
Astroparticle physics ,Physics ,COSMIC cancer database ,Atmospheric measurements ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Neutrino ,Universe ,Radio detection ,media_common - Abstract
Recent years have shown a flurry of results from the radio detection of cosmic rays, both from dedicated arrays and from measurements using astronomical radio arrays. Detecting the radio emission from cosmic rays as messengers from the ultra-high energy universe has established itself as ‘standard detection’ method. Based on these successes the radio detection of similarly high-energy neutrinos is gaining traction. I will review the current status of the radio detection in the field of astroparticle physics, highlight future experimental efforts and elaborate on open questions and future experimental challenges.
- Published
- 2021
39. Observations of the cosmic ray detector at the Argentine Marambio base in the Antarctic Peninsula
- Author
-
Antonio Juan Rubio-Montero, Jesús Peña-Rodríguez, Karoll Michely Parada Jaime, Alexander Martinez, Jorge Samanes, Alfredo Vega, Omar Areso, Mauricio Echiburu, Maynor Giovanni Ballina Escobar, Christian Sarmiento-Cano, Ticiano Torres Peralta, Mayra Betsabé Silva Carranza, Juan Carlos Terrazas, Christian Saidin Ramírez Mollinedo, Vicente Agosín, Mirko Raljević, Jorge Henrique de Andrade Pacheco Reis, D Domínguez, Daniel Manriquez, Luis Horacio Arnaldi, Maximilano Ramelli, Manuel González, Jorge Cotzomi Paleta, Fernando Lock Miletto, Sergio Dasso, Lucas Ezequiel Castillo Delacroix, D Cazar-Ramirez, Anderson Fauth, Xavier Bertou, Renan de Aguiar, Rodrigo Parra, Hugo De León, Juan Marcos Calle, Oscar Martínez Bravo, Marcelo Augusto Leigui de Oliveira, D.A. Coloma Borja, Jose Rodrigo Sacahui Reyes, O.G Morales Olivares, Yorlan Arneth Perez Cuevas, Rolando Ticona, Luis A. Nunez, Raúl Pagán Muñoz, Vitor Prestes Luzio, Ruben Conde Sanchez, Zaida del Rosario Urrutia de Gutierrez, Jhonattan Pisco-Guabave, Pablo Muñoz, Hugo Rivera, Luis Guillermo Mijangos Fuentes, Carlos Nina, E Carrera Jarrín, Gyovanna Kelly Matias do Nascimento, Pedro Vega, Adriana Vázquez-Ramírez, Cesar Castromonte, A. Vesga-Ramírez, Hernán Asorey, N Vásquez, Jonathan Araya, Dario Dallara, María Graciela Molina, Rafael Mayo-García, M Audelo, Pedro Miranda, Douglas Vitoreti, Roberto Arceo, Pablo Ulloa, Iván René Morales Argueta, Iván Sidelnik, Diego Cogollo, Luis Otiniano, Karen Salome Caballero Mora, Franz Machado, Riccardo De León Barrios, Rafaela Wiklich Sobrinho, M. Suárez-Durán, Daniel Camilo Becerra Villamizar, Mariano Gómez Berisso, Matias Pereira, Angelines Alberto Morillas, Juan Vega, César Augusto Huanca, Jenniffer Grisales Casadiegos, Juan Carlos Helo, Humberto Salazar Ibarguen, Héctor Eduardo Pérez Figueroa, César Álvarez Ochoa, Orlando Soto, Martin Subieta, Lucas Tomás Rubinstein, Nicolás Salomón, Noelia Ayelén Santos, Eduardo Moreno Barbosa, R Caiza, Adriana María Gulisano, Juan Eduardo Ise, Rolando Calderón-Ardila, Heidar Marcel Parada Villamizar, Juan Fernando Mancilla Cáceres, and Alex de Albuquerque Silva
- Subjects
Astroparticle physics ,Neutron monitor ,Physics::Instrumentation and Detectors ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Space weather ,Geodesy ,law.invention ,Earth's magnetic field ,Observatory ,law ,Physics::Atmospheric and Oceanic Physics ,Geology ,Cherenkov radiation - Abstract
In March 2019 a Space Weather Laboratory was deployed at Marambio base in the Antarctic Peninsula. The main instrument installed was a cosmic ray detector based on water Cherenkov radiation. This detector is the first permanent Antarctic node of LAGO Collaboration (Latin American Giant Observatory). LAGO Project is an extended Astroparticle Observatory and it is mainly oriented to basic research in three branches of Astroparticle physics: the Extreme Universe,Space Weather phenomena, and Atmospheric Radiation at ground level. LAGO Space Weather program is directed towards the study of how the variations of the flux of secondary cosmic rays at ground level are linked with the heliospheric and geomagnetic modulations. Observations made during 2019 and 2020 are presented here. We analyze the effect of barometric pressure and local temperature in the count rate. The corrected count rate observed with the water Cherenkov detector is compared with observations of Oulu neutron monitor which has similar rigidity cut-off than the Marambio site.
- Published
- 2021
40. Large area photon detectors for large-scale neutrino physics experiments: single large area PMTs and multi small PMTs
- Author
-
Sultim Lubsandorzhiev
- Subjects
Astroparticle physics ,Physics ,Photomultiplier ,High energy ,Optics ,KM3NeT ,business.industry ,Photon detector ,Solid-state ,Scale (descriptive set theory) ,Neutrino ,business - Abstract
More than 40 years ago beginning of works on deep underwater high energy neutrino telescope projects (DUMAND and Baikal) inspired development of new photon detectors: large area photomultipliers (PMTs), multi small PMT optical modules, small PMTs equipped with wavelength shifting plates and rods and even small area solid state photon detectors for such kind application. Now days we witness rebirth of the multi small PMT approach and it started to compete quite successfully with a single large area photon detector approach. The latter have been reigning supreme for almost half century. But recent developments of astroparticle physics experiments demonstrated good competiveness of the “multi small PMTs” idea. Several projects of astroparticle physics experiments may serve as good examples, Km3NET project and coming JUNO experiment among them. We present pros and cons of both approaches.
- Published
- 2021
41. A Fast GRB Source Localization Pipeline for the Advanced Particle-astrophysics Telescope
- Author
-
Eric Burns, John Krizmanic, Wolfgang V. Zober, Manel Errando, Dawson J. Huth, Patrick L. Kelly, A. Zink, Ryan Larm, Zachary Hughes, Dana Braun, G. S. Varner, Riccardo Paoletti, Marion Sudvarg, Emily Ramey, Jeremy Buhler, Jonah Hoffman, D. Serini, Leonardo Di Venere, Teresa Tatoli, Stefan Funk, Jeffrey Dumonthier, Wenlei Chen, John Mitchell, F. Licciulli, G. E. Simburger, Francesco Giordano, J. H. Buckley, Corrado Altomare, S. Alnussirat, Roberta Pillera, Christofer Chungata, George Suarez, Richard Bose, Makiko Kuwahara, Roger D. Chamberlain, J. G. Mitchell, Brian Rauch, Gang Liu, Eric A. Wulf, M. N. Mazziotta, Michael Cherry, and Georgia A. de Nolfo
- Subjects
Astroparticle physics ,Physics ,Photon ,Scattering ,business.industry ,Detector ,law.invention ,Telescope ,Optics ,Pair production ,law ,Gamma-ray burst ,business ,Noise (radio) - Abstract
We present a pipeline for fast GRB source localization for the Advanced Particle-astrophysics Telescope. APT records multiple Compton scatterings of incoming photons across 20 CsI detector layers, from which we infer the incident angle of each photon's first scattering to localize its source direction to a circle centered on the vector formed by its first two scatterings. Circles from multiple photons are then intersected to identify their common source direction. Our pipeline, which runs in real time on low-power hardware, uses an efficient tree search to determine the most likely ordering of scatterings for each photon (which cannot be measured due to the coarse time-scale of detection), followed by likelihood-weighted averaging and iterative least-squares refinement to combine all circles into an estimated source direction. Uncertainties in the scattering locations and energy deposits require that our pipeline be robust to high levels of noise. To test our methods, we reconstructed GRB events produced by a Geant4 simulation of APT's detectors paired with a second simulator that models measurement noise induced by the detector hardware. Our methods proved robust against noise and the effects of pair production, producing sub-degree localization for GRBs with fluence 0.3 MeV/cm^2. GRBs with fluence 0.03 MeV/cm^2 provided fewer photons for analysis but could still be localized within 2.5 degrees 68% of the time. Localization time for a 1-second 1.0 MeV/cm^2 GRB, measured on a quad-core, 1.4 GHz ARMv8 processor (Raspberry Pi 3B+), was consistently under 0.2 seconds — fast enough to permit real-time redirection of other instruments for follow-up observations.
- Published
- 2021
42. The Advanced Particle-astrophysics Telescope: Simulation of the Instrument Performance for Gamma-Ray Detection
- Author
-
Eric Burns, John Krizmanic, Jeremy Buhler, Richard Bose, Wolfgang V. Zober, Makiko Kuwahara, Patrick L. Kelly, A. Zink, Roberta Pillera, Eric A. Wulf, G. E. Simburger, G. S. Varner, Riccardo Paoletti, George Suarez, Manel Errando, Gang Liu, Roger D. Chamberlain, Jonah Hoffman, Dana Braun, Dawson J. Huth, Brian Rauch, Teresa Tatoli, Wenlei Chen, J. G. Mitchell, F. Licciulli, M. N. Mazziotta, Michael Cherry, Zachary Hughes, Stefan Funk, J. H. Buckley, Georgia A. de Nolfo, S. Alnussirat, D. Serini, Jeffrey Dumonthier, Marion Sudvarg, Leonardo Di Venere, Corrado Altomare, John Mitchell, and Francesco Giordano
- Subjects
Astroparticle physics ,Physics ,Photon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Scintillator ,Photon energy ,law.invention ,Telescope ,Nuclear physics ,Observatory ,law ,Sensitivity (control systems) ,Fermi Gamma-ray Space Telescope - Abstract
We present simulations of the instrument performance of the Advanced Particle-astrophysics Telescope (APT), a mission concept of a $\gamma$-ray and cosmic-ray observatory in a sun-Earth Lagrange orbit. The key components of the APT detector include a multiple-layer tracker composed of scintillating fibers and an imaging calorimeter composed of thin layers of CsI:Na scintillators. The design is aimed at maximizing effective area and field of view for $\gamma$-ray and cosmic-ray measurements, subject to constraints on instrument cost and total payload mass. We simulate a detector design based on $3$-meter scintillating fibers and develop reconstruction algorithms for $\gamma$-rays from a few hundreds of $\mathrm{keV}$ up to a few $\mathrm{TeV}$ energies. At the photon energy above $30~\mathrm{MeV}$, pair-production/shower reconstruction is applied; the results show that APT could provide an order of magnitude improvement in effective area and sensitivity for $\gamma$-ray detection compared with the Fermi Large Area Telescope (LAT). A multiple-Compton-scattering reconstruction at photon energies below $10~\mathrm{MeV}$ achieves sensitive detection of faint $\gamma$-ray bursts (GRBs) and other $\gamma$-ray transients down to $\sim0.01~\mathrm{MeV/cm}^2$ with degree-level to sub-degree-level localization accuracy. The Compton analysis also provides a measurement of polarization where the minimum detectable degree of polarization for $\sim1~\mathrm{MeV/cm}^2$ GRBs is below $20\%$. In addition to the APT simulations, we present the simulated performance of the Antarctic Demonstrator for APT, a 0.5m-square cross section balloon experiment that includes all of the key elements of the full APT detector.
- Published
- 2021
43. TAIGA - an advanced hybrid detector complex for astroparticle physics, cosmic ray physics and gamma-ray astronomy
- Author
-
V. P. Sulakov, E. A. Kravchenko, Roman Raikin, A. A. Grinyuk, A. Chiavassa, E. E. Korosteleva, BayarJon Paul Lubsandorzhiev, E. Popova, R. R. Mirgazov, L. G. Sveshnikova, S. Malakhov, R. P. Kokoulin, R. Togoo, A. Petrukhin, Yu. Lemeshev, A.V. Igoshin, S. Kiryuhin, V. V. Prosin, A. Porelli, A. Borodin, M. Blank, A. Ivanova, M. Tluczykont, A. N. Dyachok, V.A. Tabolenko, L. G. Tkachev, V. Samoliga, V. A. Poleschuk, R. Wischnewski, A. Bulan, E. A. Osipova, N. Ushakov, Pavel Bezyazeekov, Evgeny Postnikov, D. Zhurov, L. V. Pankov, A. Garmash, M. Ternovoy, D. Voronin, O. A. Gress, T. I. Gress, V. V. Kindin, I. I. Astapov, V. A. Kozhin, K. G. Kompaniets, Andrey Sokolov, E. V. Ryabov, R. Mirzoyan, Grigory Rubtsov, N. N. Kalmykov, O. Grishin, M. Popesku, D. Lukyantsev, V. Slunecka, A. V. Skurikhin, Y. Sagan, Dieter Horns, V. S. Ptuskin, P. Volchugov, A. L. Pakhorukov, A. Tanaev, A. Pushnin, N. B. Lubsandorzhiev, Aleksandr Gafarov, A. A. Silaev, A. V. Zagorodnikov, N. M. Budnev, Y. Suvorkin, E. Gress, A. Zhaglova, L. A. Kuzmichev, V. M. Grebenyuk, B. A. Tarashchansky, A. Vaidyanathan, I. Poddubnyi, Anatoly Lagutin, V. Ponomareva, M. Brückner, R. D. Monkhoev, B. M. Sabirov, I. I. Yashin, Alexander Kryukov, and A. Sidorenkov
- Subjects
Astroparticle physics ,Physics ,Observatory ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Electron ,Gamma-ray astronomy ,Cherenkov radiation - Abstract
The physical motivations and performance of the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV and astroparticle physics. The pilot TAIGA complex locates in the Tunka valley, ~50 km West from the southern tip of the lake Baikal. It includes integrating air Cherenkov TAIGA-HiSCORE array with 120 wide-angle optical stations distributed over on area 1 square kilometer about and three the 4-m class Imaging Atmospheric Cherenkov Telescopes of the TAIGA-IACT array. The latter array has a shape of triangle with side lengths of about 300m, 400m and 500m. The expected integral sensitivity of the 1 km2 TAIGA detector will be about 2,5 × 10-13 TeV cm-2 sec-1 for detection of E ≥ 100 TeV gamma-rays in 300 hours of source observations. The combination of the wide angle Cherenkov array and IACTs could offer a cost effective-way to build a really large (up to 10 km2) array for very high energy gamma-ray astronomy. The reconstruction of a given EAS energy, incoming direction and the core position, based on the TAIGA-HiSCORE data, allows one to increase the distance between the relatively expensive IACTs up to 600-800 m. These, together with the surface and underground electron/Muon detectors will be used for selection of gamma-ray induced EAS. Present status of the project, together with the current array description and the first experimental results and plans for the future will be reported.
- Published
- 2021
44. The Advanced Particle-astrophysics Telescope (APT) Project Status
- Author
-
Jonah Hoffman, Corrado Altomare, Teresa Tatoli, Manel Errando, Wenlei Chen, D. Serini, Dawson J. Huth, Jeffrey Dumonthier, F. Licciulli, J. G. Mitchell, Michael Cherry, Zachary Hughes, Roberta Pillera, Richard Bose, Eric Burns, Patrick L. Kelly, George Suarez, A. Zink, Gang Liu, Roger D. Chamberlain, James Buckley, Eric A. Wulf, G. S. Varner, Adapt, Stefan Funk, Riccardo Paoletti, M. N. Mazziotta, G. E. Simburger, John Krizmanic, Wolfgang V. Zober, Marion Sudvarg, Jeremy Buhler, Makiko Kuwahara, Brian Rauch, Leonardo Di Venere, John Mitchell, Francesco Giordano, J. H. Buckley, S. Alnussirat, Georgia A. de Nolfo, and Dana Braun
- Subjects
Astroparticle physics ,Physics ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Compton telescope ,Dark matter ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,law.invention ,Telescope ,Optics ,WIMP ,Orders of magnitude (time) ,law ,business ,Fermi Gamma-ray Space Telescope - Abstract
We describe the development of a future gamma-ray/cosmic-ray mission called the Advanced Particle-astrophysics Telescope (APT). The instrument will combine a pair tracker and Compton telescope in a single monolithic design. By using scintillating fibers for the tracker and wavelength-shifting fibers to readout CsI detectors, the instrument will achieve an order of magnitude improvement in sensitivity compared with Fermi but with fewer readout channels, and lower complexity. By incorporating multiple Compton imaging over a very large effective area, the instrument will also achieve orders of magnitude improvement in MeV sensitivity compared with other proposed instruments. The mission would have a broad impact on astroparticle physics; primary science drivers for the mission include: (1) probing WIMP dark matter across the entire natural mass range and annihilation cross section for a thermal WIMP, (2) providing a nearly all-sky instantaneous FoV, with prompt sub-degree localization and polarization measurements for gamma-rays transients such as neutron-star mergers and (3) making measurements of rare utra-heavy cosmic ray nuclei to distinguish between n-star merger and SNae r-process synthesis of the heavy elements. We will describe ongoing work including a series of accelerator beam tests, a piggy-back Antactic flight (APTlite) and the recently funded long-duration balloon mission: the Antarctic Demonstrator for APT (ADAPT).
- Published
- 2021
45. Properties of a New Group of Cosmic Nuclei: Results from the Alpha Magnetic Spectrometer on Sodium, Aluminum, and Nitrogen
- Author
-
Roberto Battiston, N. Nikonov, T. Martin, J. W. Song, M. Vecchi, M. Duranti, G. N. Kim, Zhihua Zhang, J. Casaus, H. L. Zhuang, B. Borgia, M. Pauluzzi, Corrado Gargiulo, H. Jinchi, D. Grandi, M. Paniccia, S. C. Lee, M. Bourquin, J Tian, Bernd Heber, G. Schwering, E Robyn, B. Bertucci, L Mussolin, M. Vazquez Acosta, C X Wang, Yichao Yu, D M Gómez-Coral, Ignazio Lazzizzera, C. Gámez, R. Q. Xiong, G. Martinez, C. Freeman, L. Ali Cavasonza, Fan Zhang, O. Kounina, H. Wu, Samuel C.C. Ting, B Beranek, K. Bollweg, Qie Sun, Mayda Velasco, S. Başeğmez-du Pree, Corinne Goy, Yung Huang Chang, K. Luebelsmeyer, G. Laurenti, J. Z. Luo, Lucio Quadrani, Liqiu Wang, C. Solano, E F Bueno, I. I. Yashin, Jun Liu, H. S. Chen, Z. H. He, Roald Z. Sagdeev, S. Della Torre, P. von Doetinchem, Andrea Contin, X. D. Cai, F. Nozzoli, G R Chen, A. Kulemzin, M. Palermo, G. Coignet, Z Liu, J Wei, Z. L. Weng, S. Rosier-Lees, R. J. García-López, Valery Zhukov, D. Rapin, V. Plyaskin, Matteo Boschini, M. Pohl, C. Consolandi, V. Formato, Mauro Tacconi, V. Di Felice, A. Egorov, J. D. Burger, T. Siedenburg, B. S. Shan, M. Konyushikhin, M. B. Demirköz, Youhua Yang, Z Shakfa, Rami Vainio, V Vagelli, F. Donnini, H. D. Phan, F. Zhao, C Zheng, Massimo Gervasi, H. T. Lee, Carlos Díaz, J. Berdugo, J Negrete, Claudio Corti, F. Dimiccoli, Yi Jia, Elisa Laudi, Lin Cheng, Mario Zannoni, Stefan Schael, J Liang, Z. Y. Qu, L. Wang, Andrei Kounine, Q. Yan, M. Graziani, B. Khiali, Timothy H. Hsieh, T. Urban, M. Li, J H Li, J. H. Zhang, D. Rozza, C. Light, N. Attig, Pier-Giorgio Rancoita, A. Pashnin, M. Capell, V. Choutko, C. Mañá, G. Ambrosi, C. H. Chung, J. Marquardt, Xi Luo, Naihua Wang, T Medvedeva, J. J. Torsti, S. Pensotti, Veronica Bindi, G. Castellini, M Valencia-Otero, S. Li, W. J. Burger, K. C. Han, M. Molero, F. Cervelli, E. Fiandrini, X. Qin, S. Di Falco, Q. L. Wang, W Xu, S Wang, C. Delgado, T. Kirn, Nicola Tomassetti, F. Giovacchini, D. Krasnopevtsev, P. Mott, M. Behlmann, Luísa Arruda, Behcet Alpat, Julio C. Marín, A. Lebedev, Zhixiang Tang, A. Menchaca-Rocha, Ilya Usoskin, S. Chouridou, J. Q. Li, A. Kuhlman, A.I. Oliva, M. Orcinha, F. Barao, L Strigari, X. W. Tang, Thomas Lippert, M. Incagli, R. K. Hashmani, P. H. Fisher, S. M. Ting, Xiaoqun Wang, K. Dadzie, F. Palmonari, J. P. Vialle, Zhenzi Wang, Z. M. Zheng, F. Machate, H. Y. Chou, Z. Cui, Q. Meng, Yu Wang, Sadakazu Haino, C. Tüysüz, M. Aguilar, R. Sonnabend, W. Y. Jang, Guo-Ming Chen, Chia-Hui Lin, J. Gong, S. Q. Lu, H. Yi, Henning Gast, S. Burmeister, X J Song, A. Bartoloni, A. Rozhkov, Varlen Grabski, Jun Hu, A. Reina Conde, Eun-Suk Seo, Ying Lu, P. Zuccon, V. Koutsenko, Eino Valtonen, Z. H. Li, Qiang Li, C. Clark, A. Eline, E. Valente, Chuanguo Zhang, N. Masi, L. Barrin, A. Schulz von Dratzig, Z. Q. Yu, F. Dong, Y. Chen, A. Zichichi, T Su, V. V. Mikhailov, Stepan Poluianov, Fajun Zhang, Jonathan L. Feng, Zhen Sun, G. La Vacca, David Maurin, Laurent Derome, Bourquin, Maurice, Chen, Yao, Liu, Zhen, Paniccia, Mercedes, Pohl, Martin, Rapin, Divic Jean, Robyn, Erwan, Wei, Jiahui, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), AMS, Aguilar, M, Cavasonza, L, Alpat, B, Ambrosi, G, Arruda, L, Attig, N, Barao, F, Barrin, L, Bartoloni, A, Başeğmez-du Pree, S, Battiston, R, Behlmann, M, Beranek, B, Berdugo, J, Bertucci, B, Bindi, V, Bollweg, K, Borgia, B, Boschini, M, Bourquin, M, Bueno, E, Burger, J, Burger, W, Burmeister, S, Cai, X, Capell, M, Casaus, J, Castellini, G, Cervelli, F, Chang, Y, Chen, G, Chen, H, Chen, Y, Cheng, L, Chou, H, Chouridou, S, Choutko, V, Chung, C, Clark, C, Coignet, G, Consolandi, C, Contin, A, Corti, C, Cui, Z, Dadzie, K, Delgado, C, Della Torre, S, Demirköz, M, Derome, L, Di Falco, S, Di Felice, V, Díaz, C, Dimiccoli, F, von Doetinchem, P, Dong, F, Donnini, F, Duranti, M, Egorov, A, Eline, A, Feng, J, Fiandrini, E, Fisher, P, Formato, V, Freeman, C, Gámez, C, García-López, R, Gargiulo, C, Gast, H, Gervasi, M, Giovacchini, F, Gómez-Coral, D, Gong, J, Goy, C, Grabski, V, Grandi, D, Graziani, M, Haino, S, Han, K, Hashmani, R, He, Z, Heber, B, Hsieh, T, Hu, J, Incagli, M, Jang, W, Jia, Y, Jinchi, H, Khiali, B, Kim, G, Kirn, T, Konyushikhin, M, Kounina, O, Kounine, A, Koutsenko, V, Krasnopevtsev, D, Kuhlman, A, Kulemzin, A, La Vacca, G, Laudi, E, Laurenti, G, Lazzizzera, I, Lebedev, A, Lee, H, Lee, S, Li, J, Li, M, Li, Q, Li, S, Li, Z, Liang, J, Light, C, Lin, C, Lippert, T, Liu, J, Liu, Z, Lu, S, Lu, Y, Luebelsmeyer, K, Luo, J, Luo, X, Machate, F, Mañá, C, Marín, J, Marquardt, J, Martin, T, Martínez, G, Masi, N, Maurin, D, Medvedeva, T, Menchaca-Rocha, A, Meng, Q, Mikhailov, V, Molero, M, Mott, P, Mussolin, L, Negrete, J, Nikonov, N, Nozzoli, F, Oliva, A, Orcinha, M, Palermo, M, Palmonari, F, Paniccia, M, Pashnin, A, Pauluzzi, M, Pensotti, S, Phan, H, Plyaskin, V, Pohl, M, Poluianov, S, Qin, X, Qu, Z, Quadrani, L, Rancoita, P, Rapin, D, Conde, A, Robyn, E, Rosier-Lees, S, Rozhkov, A, Rozza, D, Sagdeev, R, Schael, S, von Dratzig, A, Schwering, G, Seo, E, Shakfa, Z, Shan, B, Siedenburg, T, Solano, C, Song, J, Song, X, Sonnabend, R, Strigari, L, Su, T, Sun, Q, Sun, Z, Tacconi, M, Tang, X, Tang, Z, Tian, J, Ting, S, Tomassetti, N, Torsti, J, Tüysüz, C, Urban, T, Usoskin, I, Vagelli, V, Vainio, R, Valencia-Otero, M, Valente, E, Valtonen, E, Vázquez Acosta, M, Vecchi, M, Velasco, M, Vialle, J, Wang, C, Wang, L, Wang, N, Wang, Q, Wang, S, Wang, X, Wang, Y, Wang, Z, Wei, J, Weng, Z, Wu, H, Xiong, R, Xu, W, Yan, Q, Yang, Y, Yashin, I, Yi, H, Yu, Y, Yu, Z, Zannoni, M, Zhang, C, Zhang, F, Zhang, J, Zhang, Z, Zhao, F, Zheng, C, Zheng, Z, Zhuang, H, Zhukov, V, Zichichi, A, Zuccon, P, Aguilar M., Cavasonza L.A., Alpat B., Ambrosi G., Arruda L., Attig N., Barao F., Barrin L., Bartoloni A., Basegmez-Du Pree S., Battiston R., Behlmann M., Beranek B., Berdugo J., Bertucci B., Bindi V., Bollweg K., Borgia B., Boschini M.J., Bourquin M., Bueno E.F., Burger J., Burger W.J., Burmeister S., Cai X.D., Capell M., Casaus J., Castellini G., Cervelli F., Chang Y.H., Chen G.M., Chen G.R., Chen H.S., Chen Y., Cheng L., Chou H.Y., Chouridou S., Choutko V., Chung C.H., Clark C., Coignet G., Consolandi C., Contin A., Corti C., Cui Z., Dadzie K., Delgado C., Della Torre S., Demirkoz M.B., Derome L., Di Falco S., Di Felice V., Diaz C., Dimiccoli F., Von Doetinchem P., Dong F., Donnini F., Duranti M., Egorov A., Eline A., Feng J., Fiandrini E., Fisher P., Formato V., Freeman C., Gamez C., Garcia-Lopez R.J., Gargiulo C., Gast H., Gervasi M., Giovacchini F., Gomez-Coral D.M., Gong J., Goy C., Grabski V., Grandi D., Graziani M., Haino S., Han K.C., Hashmani R.K., He Z.H., Heber B., Hsieh T.H., Hu J.Y., Incagli M., Jang W.Y., Jia Y., Jinchi H., Khiali B., Kim G.N., Kirn T., Konyushikhin M., Kounina O., Kounine A., Koutsenko V., Krasnopevtsev D., Kuhlman A., Kulemzin A., La Vacca G., Laudi E., Laurenti G., Lazzizzera I., Lebedev A., Lee H.T., Lee S.C., Li J.Q., Li M., Li Q., Li S., Li J.H., Li Z.H., Liang J., Light C., Lin C.H., Lippert T., Liu J.H., Liu Z., Lu S.Q., Lu Y.S., Luebelsmeyer K., Luo J.Z., Luo X., Machate F., Mana C., Marin J., Marquardt J., Martin T., Martinez G., Masi N., Maurin D., Medvedeva T., Menchaca-Rocha A., Meng Q., Mikhailov V.V., Molero M., Mott P., Mussolin L., Negrete J., Nikonov N., Nozzoli F., Oliva A., Orcinha M., Palermo M., Palmonari F., Paniccia M., Pashnin A., Pauluzzi M., Pensotti S., Phan H.D., Plyaskin V., Pohl M., Poluianov S., Qin X., Qu Z.Y., Quadrani L., Rancoita P.G., Rapin D., Conde A.R., Robyn E., Rosier-Lees S., Rozhkov A., Rozza D., Sagdeev R., Schael S., Von Dratzig A.S., Schwering G., Seo E.S., Shakfa Z., Shan B.S., Siedenburg T., Solano C., Song J.W., Song X.J., Sonnabend R., Strigari L., Su T., Sun Q., Sun Z.T., Tacconi M., Tang X.W., Tang Z.C., Tian J., Ting S.C.C., Ting S.M., Tomassetti N., Torsti J., Tuysuz C., Urban T., Usoskin I., Vagelli V., Vainio R., Valencia-Otero M., Valente E., Valtonen E., Vazquez Acosta M., Vecchi M., Velasco M., Vialle J.P., Wang C.X., Wang L., Wang L.Q., Wang N.H., Wang Q.L., Wang S., Wang X., Wang Y., Wang Z.M., Wei J., Weng Z.L., Wu H., Xiong R.Q., Xu W., Yan Q., Yang Y., Yashin I.I., Yi H., Yu Y.M., Yu Z.Q., Zannoni M., Zhang C., Zhang F., Zhang F.Z., Zhang J.H., Zhang Z., Zhao F., Zheng C., Zheng Z.M., Zhuang H.L., Zhukov V., Zichichi A., Zuccon P., and Astronomy
- Subjects
Cosmic ray composition & spectra ,Analytical chemistry ,General Physics and Astronomy ,Cosmic Ray nuclei ,Galactic cosmic rays ,International Space Station ,01 natural sciences ,Cosmology & Astrophysics ,Alpha Magnetic Spectrometer ,Cosmic-rays ,AMS ,010303 astronomy & astrophysics ,Range (particle radiation) ,COSMIC cancer database ,Nitrogen ,Aluminum nuclei ,FIS/01 - FISICA SPERIMENTALE ,Cosmic ray propagation ,Gravitation ,Primary cosmic rays ,Materials science ,Silicon ,Cosmic-ray source abundance ,Astrophysics::High Energy Astrophysical Phenomena ,Sodium ,chemistry.chemical_element ,Cosmic ray ,ddc:500.2 ,Astrophysics::Cosmology and Extragalactic Astrophysics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Cosmic ray acceleration ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Flux (metallurgy) ,cosmic rays ,Cosmic Nuclei ,AMS-02 ,0103 physical sciences ,ddc:530 ,Nuclear Physics - Experiment ,010306 general physics ,Cosmic ray acceleration, Cosmic ray composition & spectra, Cosmic ray propagation, Cosmic ray sources, Gravitation, Cosmology & Astrophysics ,Cosmic ray sources ,Sodium nuclei ,magnetic spectrometer ,Secondary cosmic rays ,chemistry ,Astroparticle physics ,Cosmic-ray nuclei ,Aluminum - Abstract
Physical review letters : PRL 127(15), 021101 (2021). doi:10.1103/PhysRevLett.127.021101, Published by American Physical Society, College Park, Md.
- Published
- 2021
46. A photomultiplier tube test stand and on-site measurements to characterise the performance of Photonis XP3062 photomultiplier tubes at increased background light conditions and lower gain
- Author
-
H. J. Mathes, J. Zorn, M. Riegel, F. Werner, R. Engel, Radomir Smida, and Kai Daumiller
- Subjects
Astroparticle physics ,Physics ,Pierre Auger Observatory ,Nuclear and High Energy Physics ,Photomultiplier ,Physics - Instrumentation and Detectors ,Photon ,010308 nuclear & particles physics ,business.industry ,Night sky ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Amplification factor ,01 natural sciences ,Optics ,0103 physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Instrumentation ,Sensitivity (electronics) ,Cherenkov radiation - Abstract
Photomultiplier tubes (PMTs) are widely used in astroparticle physics experiments to detect light flashes (e.g. fluorescence or Cherenkov light) from extensive air showers (EASs) initiated by statistically rare very high energy cosmic particles when travelling through the atmosphere. Their high amplification factor (gain) allows the detection of very low photon fluxes down to single photons. At the same time this sensitivity causes the gain and signal-to-noise ratio to decrease with collected charge over the lifetime of the PMT (referred to as “ageing”). To avoid fast ageing, many experiments limit the PMT operation to reasonably low night sky background (NSB) conditions. However, in order to collect more event statistics at the highest energies, it is desirable to extend the measurement cycle into (part of) nights with higher NSB levels. In case the signal-to-noise ratio remains large enough in the subsequent reconstruction of the EAS events, lowering the PMT gain in such conditions can be an option to avoid faster ageing. In this paper, performance studies under high NSB with Photonis XP3062 PMTs, as used in the fluorescence detector of the Pierre Auger Observatory, are presented. The results suggest that lowering the PMT gain by a factor of 10 while increasing the NSB level by a similar factor does not significantly affect the PMT performance and ageing behaviour so that detection and offline reconstruction of EASs are still possible. Adjusting the PMT gain according to a changing NSB level throughout a night has been shown to be possible and it follows a predictable behaviour. This allows to extend the measurement cycles of experiments, based on PMTs of type Photonis XP3062 or comparable and exposed to the NSB, to enhance the sensitivity especially at the highest energies where events are very rare.
- Published
- 2019
47. Power spectrum of the flux in the Lyman-alpha forest from high-resolution spectra of 87 QSOs
- Author
-
Aaron Day, David Tytler, and Bharat Kambalur
- Subjects
QSOS ,Astroparticle physics ,Physics ,010308 nuclear & particles physics ,Flux ,Spectral density ,Astronomy and Astrophysics ,Astrophysics ,Lyman-alpha forest ,01 natural sciences ,Space and Planetary Science ,Intergalactic medium ,0103 physical sciences ,High resolution spectra ,Neutrino ,010303 astronomy & astrophysics - Abstract
We measure and calibrate the power spectrum of the flux in the Ly α forest at 1.8 < z < 4.6 for wavenumbers 0.003 ≤ k ≤ 0.1 s km−1 from the spectra of 87 QSOs obtained with HIRES on the Keck-I telescope. This is the largest sample using high-resolution spectra, yielding the smallest statistical errors, and we have applied calibrations to reduce new systematic errors. We fit Voigt profiles to the damped Ly α absorbers and we remove them. We subtract metal lines statistically based on metal absorption on the red side of the Ly α emission peak. We find that when performing a statistical subtraction of metal lines, a systematic offset due to the blending of metal and hydrogen lines must be taken into account. This offset was not accounted for in previous analyses, and requires up to a $3 {{\ \rm per\ cent}}$ reduction in the BOSS Ly α forest flux power spectrum, increasing the allowed neutrino mass. For the first time in a Ly α forest power spectrum measurement from high-resolution spectra, we correct for spectral leakage by applying Welch’s window function. Our treatment of metal line removal as well as our elimination of errors due to spectral leakage leads to a more accurate measurement of the Ly α forest power spectrum at the smallest scales. We find evidence that previously published values of the power are systematically too high at scales log k ≥ −1.3 (k ≥ 0.05) s km−1, which implies that the intergalactic medium is hotter than previously deduced from the Ly α forest flux power spectrum.
- Published
- 2019
48. On the flux of high-energy cosmogenic neutrinos and the influence of the extragalactic magnetic field
- Author
-
David Wittkowski and Karl-Heinz Kampert
- Subjects
Astroparticle physics ,Physics ,COSMIC cancer database ,Photon ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Degrees of freedom (physics and chemistry) ,Flux ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics ,Magnetic field ,Space and Planetary Science ,High Energy Physics::Experiment ,Neutrino - Abstract
Cosmogenic neutrinos originate from interactions of cosmic rays propagating through the universe with cosmic background photons. Since both high-energy cosmic rays and cosmic background photons exist, the existence of high-energy cosmogenic neutrinos is certain. However, their flux has not been measured so far. Therefore, we calculated the flux of high-energy cosmogenic neutrinos arriving at the Earth on the basis of elaborate 4D simulations that take into account three spatial degrees of freedom and the cosmological time-evolution of the universe. Our predictions for this neutrino flux are consistent with the recent upper limits obtained from large-scale cosmic-ray experiments. We also show that the extragalactic magnetic field has a strong influence on the neutrino flux. The results of this work are important for the design of future neutrino observatories, since they allow to assess the detector volume and observation time that are necessary to detect high-energy cosmogenic neutrinos in the near future. An observation of such neutrinos would push multimessenger astronomy to hitherto unachieved energy scales.
- Published
- 2019
49. Blazar VHE spectral alterations induced by photon–ALP oscillations
- Author
-
Giorgio Galanti, Fabrizio Tavecchio, Carmelo Evoli, and M. Roncadelli
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astroparticle physics ,Physics ,Photon ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Milky Way ,FOS: Physical sciences ,Spectral density ,Astronomy and Astrophysics ,DESY ,Astrophysics ,01 natural sciences ,7. Clean energy ,Spectral line ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Space and Planetary Science ,0103 physical sciences ,Elliptical galaxy ,Astrophysics - High Energy Astrophysical Phenomena ,Blazar ,010303 astronomy & astrophysics - Abstract
Prompted by the increasing interest of axion-like particles (ALPs) for very-high-energy (VHE) astrophysics, we have considered a full scenario for the propagation of a VHE photon/ALP beam emitted by a BL Lac and reaching us in the light of the most up-to-date astrophysical information and for energies up to above $100 \, \rm TeV$. During its trip, the beam -- generated in a small region of a BL Lac jet -- crosses a variety of magnetic structures in very different astronomical environments: the BL Lac jet, the host elliptical galaxy, the extragalactic space and the Milky Way. We have taken an effort to model all these magnetic fields in the most realistic fashion and using a new model developed by us concerning the extragalactic magnetic field. Assuming an intrinsic spectrum with a power law exponentially truncated at a fixed cut-off energy, we have evaluated the resulting observed spectra of Markarian 501, the extreme BL Lac 1ES 0229+200 and a similar source located at $z = 0.6$ up to above $100 \, \rm TeV$. We obtain interesting results: the model with photon-ALP oscillations possesses features (spectral energy oscillatory behaviour and photon excess above $20 \, \rm TeV$) which can be tested by $\gamma$-ray observatories like CTA, HAWC, GAMMA 400, LHAASO, TAIGA-HiSCORE and HERD. In addition, our ALP can be detected in dedicated laboratory experiments like the upgrade of ALPS II at DESY, the planned IAXO and STAX experiments, as well as with other techniques developed by Avignone and collaborators., Comment: 11 pages, 5 figures, accepted for publication by MNRAS
- Published
- 2019
50. CLUMPY v3: γ-ray and ν signals from dark matter at all scales
- Author
-
David Maurin, Moritz Hütten, and Céline Combet
- Subjects
Astroparticle physics ,Physics ,Dark matter ,General Physics and Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Cosmology ,Redshift ,010305 fluids & plasmas ,Dark matter halo ,Hardware and Architecture ,0103 physical sciences ,Halo ,Neutrino ,010306 general physics ,Lepton - Abstract
We present the third release of the CLUMPY code for calculating γ -ray and ν signals from annihilations or decays in dark matter structures. This version includes the mean extragalactic signal with several pre-defined options and keywords related to cosmological parameters, mass functions for the dark matter structures, and γ -ray absorption up to high redshift. For more flexibility and consistency, dark matter halo masses and concentrations are now defined with respect to a user-defined overdensity Δ . We have also made changes for the user’s benefit: distribution and versioning of the code via git , less dependencies and a simplified installation, better handling of options in run command lines, consistent naming of parameters, and a new Sphinx documentation at http://lpsc.in2p3.fr/clumpy/ . Program summary Program Title: CLUMPY Program Files doi: http://dx.doi.org/10.17632/4n33mbh9bc.1 Licensing provisions: GPLv2 Programming language: C/C++ External routines/libraries: GSL ( http://www.gnu.org/software/gsl ), cfitsio ( http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html ), CERN ROOT ( http://root.cern.ch ; optional, for interactive figures and stochastic simulation of halo substructures), GreAT ( http://lpsc.in2p3.fr/great ; optional, for MCMC Jeans analyses) Nature of problem: Calculation of the γ -ray and ν signals from dark matter annihilation/decay at any redshift z . Solution method: New in this release: Numerical integration of moments (in redshift and mass) of the mass function, absorption, and intensity multiplier (related to the DM density along the line of sight). Restrictions: Secondary radiation from dark matter leptons, which depends on astrophysical ingredients (radiation fields in the Universe) is the last missing piece to provide a full description of the expected signal.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.