1. Existence, uniqueness and global behavior of the solutions to some nonlinear vector equations in a finite dimensional Hilbert space
- Author
-
Alain Haraux, María Anguiano, Mama Abdelli, Université Djilali Liabès [Sidi-Bel-Abbès], Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad de Sevilla. Departamento de Análisis Matemático, and Universidad de Sevilla. FQM104: Análisis Matemático
- Subjects
AMS classification numbers: 34A34 ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,34D05 ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,Dynamical Systems (math.DS) ,System of linear equations ,01 natural sciences ,symbols.namesake ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,Initial value problem ,Uniqueness ,Mathematics - Dynamical Systems ,0101 mathematics ,Mathematics ,Uniqueness of the solution ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Hilbert space ,34C10 ,Decay rate ,010101 applied mathematics ,34E99 Keywords: Existence of the solution ,Nonlinear system ,Mathematics - Classical Analysis and ODEs ,symbols ,Analysis ,Existence of the solution - Abstract
The initial value problem and global properties of solutions are studied for the vector equation: ( ‖ u ′ ‖ l u ′ ) ′ + ‖ A 1 2 u ‖ β A u + g ( u ′ ) = 0 in a finite dimensional Hilbert space under suitable assumptions on g .
- Published
- 2015
- Full Text
- View/download PDF