12 results on '"A. Grynagier"'
Search Results
2. Identification of Dynamic Parameters for a One-Axis Drag-Free Gradiometer
- Author
-
A. Grynagier, Walter Fichter, and Tobias Ziegler
- Subjects
Physics ,Spacecraft ,Noise (signal processing) ,Payload ,business.industry ,Estimation theory ,Gravimeter ,Astrophysics::Instrumentation and Methods for Astrophysics ,Aerospace Engineering ,Transfer function ,Gradiometer ,Control theory ,Calibration ,Electrical and Electronic Engineering ,business - Abstract
A parametric estimation algorithm for a single-axis gradiometer is described. The most influential parameters are isolated and estimated; their bias and variance are discussed. Even though the system is closed-loop controlled, only plant parameters are estimated using an open-loop identification equation, which simplifies the identification procedure. The estimates are obtained using the method of instrumental variables (IV). The advantage of this method is that it remains bias-free even when the system states are correlated with the measurement noise. The problem is described in a one-dimensional frame, but it can be extended to the multivariate case if necessary. The estimated parameters are then used to reconstitute the closed-loop transfer function, which allows the input disturbance that caused the observed signal to be deduced. The estimation algorithm is applied to the laser interferometer space antenna (LISA) technology package, which is the scientific payload of the LISA Pathfinder spacecraft (SC), an ESA/NASA technology demonstrator to be launched in 2014. The analysis is operated on a simulated dataset produced with the mission end-to-end simulator (E2E) as well as with a simple linear simulator. The on-board software and hardware constraints are taken into account since they are important performance drivers. The results are detailed along with the experiment model.
- Published
- 2013
3. Parabolic Drag-Free Flight, Actuation with Kicks, Spectral Analysis with Gaps
- Author
-
A. Grynagier, Walter Fichter, and Stefano Vitale
- Subjects
Physics ,Gap filling ,business.industry ,Acoustics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Perturbation (astronomy) ,Astronomy and Astrophysics ,Free space ,Computer Science::Robotics ,Pathfinder ,Optics ,Space and Planetary Science ,Drag ,Spectral analysis ,Free flight ,Actuator ,business - Abstract
The LISA Pathfinder Drift Mode is an experimental mode proposed for the LISA Pathfinder drag free space mission. The Drift Mode’s specificity is to switch off a possibly noisy actuator periodically in order to minimize the actuation noise. The experiment delivers a measurement that includes data segments virtually free of any actuation force noise. The corresponding acceleration data is then used to estimate the experiment disturbance spectrum, using a calibrating and gap-filling algorithm.
- Published
- 2009
4. The LISA Pathfinder Mission
- Author
-
Ivan Lloro, G. Russano, Gerhard Heinzel, C. García Marirrodriga, J. Reiche, Matteo Benedetti, S. Madden, J. Bogenstahl, Víctor S. Martín, M. Caleno, H. B. Tu, P. Prat, Peter Zweifel, M. Hueller, Ph. Jetzer, E. Mitchell, N. Dumbar, Heather Audley, D. Wealthy, José F. F. Mendes, X. Llamas, H. Ward, J. A. Romera Perez, M. Cruise, C. Trenkel, Stefano Vitale, A. Grynagier, Ignacio Mateos, Karsten Danzmann, Eric Plagnol, M. Diaz-Aguilo, Oliver Jennrich, Daniele Bortoluzzi, W. J. Weber, Paul McNamara, T. J. Sumner, Christian J. Killow, Domenico Giardini, Martin Hewitson, A. Lobo, Walter Fichter, Daniel Hollington, Valerio Ferroni, G. Dixton, Carlos F. Sopuerta, Miquel Nofrarías, Antonella Cavalleri, Felipe Guzman, D. Hoyland, Davor Mance, David Robertson, G. Congedo, Luigi Ferraioli, N. Korsakova, Michael Perreur-Lloyd, Ewan Fitzsimons, Ingo Diepholz, Alexander Schleicher, D. Texier, N. Brandt, A.M. Taylor, F. De Marchi, Rita Dolesi, Daniele Nicolodi, Gudrun Wanner, Juan Ramos-Castro, Ferran Gibert, R. Gerndt, Tobias Ziegler, Michele Armano, F. Antonucci, M. Freschi, Catia Grimani, S. Wen, J. Huesler, B. Johlander, Ian Harrison, S. Waschke, Peter Wass, N. Karnesis, Pierre Binétruy, Lluis Gesa, G. Auger, R. Maarschalkerweerd, H. Rozemeijer, D. Shaul, and J. Fauste
- Subjects
Physics ,Gravitational wave ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Propulsion ,Space exploration ,Metrology ,Gravitation ,Pathfinder ,Optics ,Space and Planetary Science ,Inertial measurement unit ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,Aerospace engineering ,business ,Mathematical Physics - Abstract
LISA Pathfinder (formerly known as SMART-2) is an European Space Agency mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for space-borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control, and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of spaceborne gravitational wave detectors by shrinking the million kilometre scale armlengths down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. In this paper I will give a brief overview of the mission, focusing on scientific and technical goals.
- Published
- 2013
5. Analysis of the residual force noise for the LISA Technology Package
- Author
-
Ferraioli, Luigi, Armano, Michele, Congedo, Giuseppe, Diaz-Aguilo, Marc, De Marchi, Fabrizio, Grynagier, Adrien, Hewitson, Martin, Hueller, Mauro, Monsky, Anneke, Nofrarias, Miquel, Plagnol, Eric, Rais, Boutheina, and Vitale, Stefano
- Subjects
Physics - Data Analysis, Statistics and Probability ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Data Analysis, Statistics and Probability (physics.data-an) - Abstract
The analysis of the noise sources perturbing a test mass (TM) geodesic motion is the main scientific objective of the LISA Technology Package experiment (LTP) on board of the LISA Pathfinder space mission. Information on force noise acting on TMs are obtained with a data reduction procedure involving system parameters. Such parameters can be estimated from dedicated experimental runs. Therefore the final estimation of force noise is affected by two sources of uncertainty. One is statistical and connected to the random nature of noisy signals. The other is connected to the uncertainties on the system parameters. The analysis of simulated LTP data is indicating that the major contribution to the force noise power spectral density uncertainties is coming from the statistical properties of the spectrum estimator., Comment: To be published in Journal of Physics: Conference Series, Proceedings of the 8th International LISA Symposium
- Published
- 2011
- Full Text
- View/download PDF
6. LISA Pathfinder: mission and status
- Author
-
Antonucci, F, Armano, M, Audley, H, Auger, G, Benedetti, M, Binetruy, P, Boatella, C, Bogenstahl, J, Bortoluzzi, D, Bosetti, P, Caleno, M, Cavalleri, A, Cesa, M, Chmeissani, M, Ciani, G, Conchillo, A, Congedo, G, Cristofolini, I, Cruise, M, Danzmann, K, De Marchi, F, Diaz-Aguilo, M, Diepholz, I, Dixon, G, Dolesi, R, Dunbar, N, Fauste, J, Ferraioli, L, Fertin, D, Fichter, W, Fitzsimons, E, Freschi, M, Marin, AG, Marirrodriga, CG, Gerndt, R, Gesa, L, Gilbert, F, Giardini, D, Grimani, C, Grynagier, A, Guillaume, B, Guzmán, F, Harrison, I, Heinzel, G, Hewitson, M, Hollington, D, Hough, J, Hoyland, D, Hueller, M, Huesler, J, Jeannin, O, Jennrich, O, Jetzer, P, Johlander, B, Killow, C, Llamas, X, Lloro, I, Lobo, A, Maarschalkerweerd, R, Madden, S, Mance, D, Mateos, I, McNamara, PW, Mendes, J, Mitchell, E, Monsky, A, Nicolini, D, Nicolodi, D, Nofrarias, M, Pedersen, F, Perreur-Lloyd, M, Perreca, A, Plagnol, E, Prat, P, Racca, GD, Rais, B, Ramos-Castro, J, Reiche, J, Perez, JAR, Robertson, D, Rozemeijer, H, Sanjuan, J, Schleicher, A, Schulte, M, Shaul, D, Stagnaro, L, Strandmoe, S, Steier, F, Sumner, TJ, Taylor, A, Texier, D, Trenkel, C, Tombolato, D, Vitale, S, Wanner, G, Ward, H, Waschke, S, Wass, P, Weber, WJ, Zweifel, P, Gruppo Collegato di Trento, National Institute for Nuclear Physics ( INFN ), European Space Astronomy Centre, European Space Agency ( ESA ), Max-Planck-Institut für Gravitationsphysik, Universitat Hannover, AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Centre National d'Etudes Spatiales ( CNES ), European Space Technology Centre, IFAE, Universitat Autònoma de Barcelona [Barcelona] ( UAB ), Department of Physics [Gainesville], University of Florida [Gainesville], ICE, Institut d'Estudis Espacials de Catalunya ( IEEC-CSIC ), School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], EPSC, Astrium Ltd, Institut für Flugmechanik und Flugregelung, Department of Physics and Astronomy, University of Glasgow, Astrium GmbH, Institut für Geophysik [Zürich], Eidgenössische Technische Hochschule [Zürich] ( ETH Zürich ), Istituto di Fisica, NASA Goddard Space Flight Center ( GSFC ), European Space Operations Centre, Blackett Laboratory, Imperial College London, Institut für Theoretische Physik, Universität Zürich [Zürich] ( UZH ), NTE-SENER, Departament d'Enginyeria Electrònica [Barcelona], Istituto Nazionale di Fisica Nucleare (INFN), European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), European Space Research and Technology Centre (ESTEC), Institut de Física d’Altes Energies [Barcelone] (IFAE), Universitat Autònoma de Barcelona (UAB), Department of Physics [Gainesville] (UF|Physics), University of Florida [Gainesville] (UF), Institut d'Estudis Espacials de Catalunya (IEEC-CSIC), SUPA School of Physics and Astronomy [Glasgow], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), NASA Goddard Space Flight Center (GSFC), Universität Zürich [Zürich] = University of Zurich (UZH), National Institute for Nuclear Physics (INFN), European Space Agency (ESA), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Universitat Autònoma de Barcelona [Barcelona] (UAB), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Universität Zürich [Zürich] (UZH), Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics and Astronomy (miscellaneous) ,Physical Sciences ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,ComputingMilieux_MISCELLANEOUS ,[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] - Abstract
LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch. © 2011 IOP Publishing Ltd.
- Published
- 2011
7. The first mock data challenge for LISA Pathfinder
- Author
-
A. Monsky, M. Hewitson, L. Ferraioli, G. Wanner, M. Nofrarias, M. Hueller, I. Diepholz, A. Grynagier, M. Armano, M. Benedetti, J. Bogenstahl, D. Bortoluzzi, P. Bosetti, N. Brandt, A. Cavalleri, G. Ciani, I. Cristofolini, M. Cruise, K. Danzmann, and R. Dolesi
- Abstract
The data analysis of the LISA Technology Package (LTP) will comprise a series of discrete experiments, each focusing on a particular noise measurement or characterization of the instrument in various operating modes. Each of these experiments must be analysed and planned in advance of the mission because the results of a given experiment will have an impact on those that follow. As such, a series of mock data challenges (MDCs) will be developed and carried out with the aim of preparing the analysis tools and optimizing the various planned analyses. The first of these MDCs (MDC1) is a simplified treatment of the dynamics along the axis joining the two test masses onboard LISA Pathfinder. The validation of the dynamical model by predicting the spectra of the interferometer output data is shown, a prediction for the data analysis is calculated and, finally, several simulated interferometer data sets are analysed and calibrated to equivalent out-of-loop test mass acceleration
- Published
- 2009
8. Parameter estimation in LISA Pathfinder operational exercises
- Author
-
Martin Hewitson, Mauro Hueller, M. Diaz-Aguilo, Miquel Nofrarías, G. Congedo, Luigi Ferraioli, Michele Armano, A. Grynagier, Stefano Vitale, Escola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels, and Universitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica
- Subjects
Physics ,LISA ,History ,Object-oriented programming ,Física [Àrees temàtiques de la UPC] ,Spacecraft ,Traceability ,Estimation theory ,business.industry ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,LISA Pathfinder ,Toolbox ,Computer Science Applications ,Education ,Estimació d'un paràmetre ,Pathfinder ,Software ,Parameter estimation ,Systems engineering ,Data analysis ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The LISA Pathfinder data analysis team has been developing in the last years the infrastructure and methods required to run the mission during flight operations. These are gathered in the LTPDA toolbox, an object oriented MATLAB toolbox that allows all the data analysis functionalities for the mission, while storing the history of all operations performed to the data, thus easing traceability and reproducibility of the analysis. The parameter estimation methods in the toolbox have been applied recently to data sets generated with the OSE (Off-line Simulations Environment), a detailed LISA Pathfinder non-linear simulator that will serve as a reference simulator during mission operations. These operational exercises aim at testing the on-orbit experiments in a realistic environment in terms of software and time constraints. These simulations, so called operational exercises, are the last verification step before translating these experiments into tele-command sequences for the spacecraft, producing therefore very relevant datasets to test our data analysis methods. In this contribution we report the results obtained with three different parameter estimation methods during one of these operational exercises., 10 pages, 3 figures, prepared for the Proceedings of the 9th Edoardo Amaldi Conference on Gravitational Waves, JPCS
- Published
- 2012
9. The LISA Pathfinder drift mode: implementation solutions for a robust algorithm
- Author
-
Walter Fichter, Stefano Vitale, and A. Grynagier
- Subjects
Hardware architecture ,Physics ,Software ,Pathfinder ,Physics and Astronomy (miscellaneous) ,business.industry ,Control theory ,Capacitive sensing ,Spectral density estimation ,Perturbation (astronomy) ,Usability ,business ,Actuator - Abstract
The drag-free experiment on-board LISA Pathfinder, the LISA Technology Package (LTP), has for its main science mission the proof of a low disturbance noise level. It is measured differentially between two test-masses whose relative motion is perturbed by their respective capacitive actuator noise. In order to suppress this noise source the drift mode actuation scheme uses very short impulses to produce kicks. This way the test-masses motion between two kicks is a free parabolic flight and can be used for a spectral estimation of the remaining noise sources, allowing us to distinguish between external noise sources and actuation noise. This mode will be helpful in the case of a high actuation noise or to investigate some unexpected external noise source, but the foremost reason being that this experiment is closer to the ultimate LISA experiment in terms of actuation noise. It must be implemented on-board taking into account the constraints of a space-borne experiment in terms of robustness, usability and existing software and hardware architecture.
- Published
- 2009
10. More elevator control systems [On the lighter side]
- Author
-
Adrian Grynagier
- Subjects
Elevator control ,Control and Systems Engineering ,Computer science ,Modeling and Simulation ,Electrical and Electronic Engineering ,Automotive engineering - Published
- 2006
11. State Space Modelling and Data Analysis Exercises in LISA Pathfinder
- Author
-
Nofrarias, M., Antonucci, F., Armano, M., Audley, H., Auger, G., Benedetti, M., Binetruy, P., Bogenstahl, J., Bortoluzzi, D., Brandt, N., Caleno, M., Cavalleri, A., Giuseppe Congedo, Cruise, M., Danzmann, K., Marchi, F., Diaz-Aguilo, M., Diepholz, I., Dixon, G., Dolesi, R., Dunbar, N., Fauste, J., Ferraioli, L., Ferroni, V., Fichter, W., Fitzsimons, E., Freschi, M., Marirrodriga, C. Garcia, Gerndt, R., Gesa, L., Gibert, F., Giardini, D., Grimani, C., Grynagier, A., Guzman, F., Harrison, I., Heinzel, G., Hewitson, M., Hollington, D., Hoyland, D., Hueller, M., Huesler, J., Jennrich, O., Jetzer, P., Johlander, B., Karnesis, N., Korsakova, N., Killow, C., Llamas, X., Lloro, I., Lobo, A., Maarschalkerweerd, R., Madden, S., Mance, D., Martin, V., Mateos, I., Mcnamara, P., Mendes, I., Mitchell, E., Nicolodi, D., Perreur-Lloyd, M., Plagnol, E., Prat, P., Ramos-Castro, J., Reiche, J., Perez, J. A. Romera, Robertson, D., Rozemeijer, H., Rossano, G., Schleicher, A., Shaul, D., Sopuerta, C. F., Sumner, T. J., Taylor, A., Texier, D., Trenkel, C., Tu, H. B., Vitale, S., Wanner, G., Ward, H., Waschke, S., Wass, P., Wealthy, D., Wen, S., Weber, W., Ziegler, T., and Zweifel, P.
- Subjects
Physics - Instrumentation and Detectors ,Physics - Data Analysis, Statistics and Probability ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Instrumentation and Detectors (physics.ins-det) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,General Relativity and Quantum Cosmology ,Data Analysis, Statistics and Probability (physics.data-an) - Abstract
LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data., Comment: Plenary talk presented at the 9th International LISA Symposium, 21-25 May 2012, Paris
12. LISA PATHFINDER FIRST STEP TOWARD A GRAVITATIONAL WAVE SPACE OBSERVATORY
- Author
-
Bassan, M., Armano, M., Audley, H., Auger, G., Baird, J. T., Binetruy, P., Born, M., Bortoluzzi, D., Brandt, N., Caleno, M., Carbone, L., Cavalleri, A., Cesarini, A., Ciani, G., Congedo, G., Cruise, A. M., Danzmann, K., Deus Silva, M., Rosario De Rosa, Di Fiore, L., Diaz-Aguiló, M., Diepholz, I., Dixon, G., Dolesi, R., Dunbar, N., Ferraioli, L., Ferroni, V., Fitzsimons, E. D., Flatscher, R., Freschi, M., Garcia Marín, A., García Marrirodriga, C., Gerndt, R., Gesa, L., Gibert, F., Giardini, D., Giusteri, R., Grado, A., Grimani, C., Grynagier, A., Grzymisch, J., Guzman, F., Harrison, I., Heinzel, G., Hewitson, M., Hollington, D., Hoyland, D., Hueller, M., Inchauspé, H., Jennrich, O., Jetzer, P., Johlander, B., Karnesis, N., Kaune, B., Korsakova, N., Killow, C. J., Lobo, J. A., Lloro, I., Liu, L., López-Zaragoza, J. P., Maarschalkerweerd, R., Mance, D., Martín, V., Martin-Polo, L., Martino, J., Martin-Porqueras, F., Madden, S., Mateos, I., Mcnamara, P. W., Mendes, J., Mendes, L., Monsky, A., Nicolodi, D., Nofrarias, M., Paczkowski, S., Perreur-Lloyd, M., Petiteau, A., Pivato, P., Plagnol, E., Prat, P., Ragnit, U., Raïs, B., Ramos-Castro, J., Reiche, J., Robertson, D. I., Rozemeijer, H., Rivas, F., Russano, G., Sanjuan, J., Sarra, P., Schleicher, A., Shaul, D., Slutsky, J., Sopuerta, C. F., Stanga, R., Steier, F., Sumner, T., Texier, D., Thorpe, J. I., Trenkel, C., Tröbs, M., Tu, H. B., Vetrugno, D., Vitale, S., Wand, V., Wanner, G., Ward, H., Wass, P. J., Wealthy, D., Weber, W. J., Wissel, L., Wittchen, A., Zambotti, A., Zanoni, C., Ziegler, T., and Zweifel, P.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.