Enrico Priola, Paul-Eric Chaudru de Raynal, Stéphane Menozzi, Laboratoire de Mathématiques (LAMA), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Centre National de la Recherche Scientifique (CNRS), Laboratory of Stochastic Analysis and its Applications [Moscow], National Research University Higher School of Economics [Moscow] (HSE), Dipartimento di Matematica 'Giuseppe Peano' [Torino], Università degli studi di Torino (UNITO), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Université d'Évry-Val-d'Essonne (UEVE)-ENSIIE-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Vysšaja škola èkonomiki = National Research University Higher School of Economics [Moscow] (HSE), and Università degli studi di Torino = University of Turin (UNITO)
We establish weak well-posedness for critical symmetric stable driven SDEs in R d with additive noise Z, d $\ge$ 1. Namely, we study the case where the stable index of the driving process Z is $\alpha$ = 1 which exactly corresponds to the order of the drift term having the coefficient b which is continuous and bounded. In particular, we cover the cylindrical case when Zt = (Z 1 t ,. .. , Z d t) and Z 1 ,. .. , Z d are independent one dimensional Cauchy processes. Our approach relies on L p-estimates for stable operators and uses perturbative arguments. 1. Statement of the problem and main results We are interested in proving well-posedness for the martingale problem associated with the following SDE: (1.1) X t = x + t 0 b(X s)ds + Z t , where (Z s) s$\ge$0 stands for a symmetric d-dimensional stable process of order $\alpha$ = 1 defined on some filtered probability space ($\Omega$, F, (F t) t$\ge$0 , P) (cf. [2] and the references therein) under the sole assumptions of continuity and boundedness on the vector valued coefficient b: (C) The drift b : R d $\rightarrow$ R d is continuous and bounded. 1 Above, the generator L of Z writes: L$\Phi$(x) = p.v. R d \{0} [$\Phi$(x + z) -- $\Phi$(x)]$\nu$(dz), x $\in$ R d , $\Phi$ $\in$ C 2 b (R d), $\nu$(dz) = d$\rho$ $\rho$ 2$\mu$ (d$\theta$), z = $\rho$$\theta$, ($\rho$, $\theta$) $\in$ R * + x S d--1. (1.2) (here $\times$, $\times$ (or $\times$) and | $\times$ | denote respectively the inner product and the norm in R d). In the above equation, $\nu$ is the L{\'e}vy intensity measure of Z, S d--1 is the unit sphere of R d and$\mu$ is a spherical measure on S d--1. It is well know, see e.g. [20] that the L{\'e}vy exponent $\Phi$ of Z writes as: (1.3) $\Phi$($\lambda$) = E[exp(i $\lambda$, Z 1)] = exp -- S d--1 | $\lambda$, $\theta$ |$\mu$(d$\theta$) , $\lambda$ $\in$ R d , where $\mu$ = c 1$\mu$ , for a positive constant c 1 , is the so-called spectral measure of Z. We will assume some non-degeneracy conditions on $\mu$. Namely we introduce assumption (ND) There exists $\kappa$ $\ge$ 1 s.t. (1.4) $\forall$$\lambda$ $\in$ R d , $\kappa$ --1 |$\lambda$| $\le$ S d--1 | $\lambda$, $\theta$ |$\mu$(d$\theta$) $\le$ $\kappa$|$\lambda$|. 1 The boundedness of b is here assumed for technical simplicity. Our methodology could apply, up to suitable localization arguments, to a drift b having linear growth.