1. Statistical modeling of computer malware propagation dynamics in cyberspace
- Author
-
Peng Zhao, Taizhong Hu, Xing Fang, Shouhuai Xu, Zijian Fang, and Maochao Xu
- Subjects
Statistics and Probability ,Software_OPERATINGSYSTEMS ,021103 operations research ,Computer science ,0211 other engineering and technologies ,Statistical model ,02 engineering and technology ,Articles ,computer.software_genre ,Computer security ,01 natural sciences ,ComputingMilieux_MANAGEMENTOFCOMPUTINGANDINFORMATIONSYSTEMS ,010104 statistics & probability ,Important research ,Dynamics (music) ,Malware ,0101 mathematics ,Statistics, Probability and Uncertainty ,Cyberspace ,computer ,Cyber threats ,Computer Science::Cryptography and Security - Abstract
Modeling cyber threats, such as the computer malicious software (malware) propagation dynamics in cyberspace, is an important research problem because models can deepen our understanding of dynamical cyber threats. In this paper, we study the statistical modeling of the macro-level evolution of dynamical cyber attacks. Specifically, we propose a Bayesian structural time series approach for modeling the computer malware propagation dynamics in cyberspace. Our model not only possesses the parsimony property (i.e. using few model parameters) but also can provide the predictive distribution of the dynamics by accommodating uncertainty. Our simulation study shows that the proposed model can fit and predict the computer malware propagation dynamics accurately, without requiring to know the information about the underlying attack-defense interaction mechanism and the underlying network topology. We use the model to study the propagation of two particular kinds of computer malware, namely the Conficker and Code Red worms, and show that our model has very satisfactory fitting and prediction accuracies.
- Published
- 2022