Action of GABA agonists and antagonists on memory. The θ rhythm. Muscimol may directly alter memory. Recently, a modified matching to position (MTP) paradigm was employed aimed at influencing the type of associations a rat may use to solve the task. The main behavioral manipulation was the application of a differential outcomes procedure (DOP). DOP implies correlating each event to be remembered with a different reward condition. This procedure will result in the development of specific reward expectations which will in turn increase and guide choice behavior. Such different reward expectations will not be present when the reward assignation used is either common or random (non-differential outcomes procedure, NOP). Intraventricular infusion of muscimol or CSF in rats carrying out a delayed MTP using either a MOP or an NOP protocol will affect both groups of rats, but the nature of the deficit will differ depending on the reinforcement contingencies. Rats trained in DOP will show general non-mnemonic damage independent of delay, i.e., performance will be affected at all delay intervals employed. On the contrary, rats trained in NOP will show delay-dependent damage. This appears to demonstrate that muscimol may also have untoward memory effects, which further indicates that activation of GABA receptors will affect a set of memory associations and functions. Difficulties experienced in the past regarding LTP induction at the level of the CA3-CA1 synapse using time-based spike presentation protocols have been disconcerting given the preeminence of these synapses as a model system for the study of synaptic plasticity. Results previously discussed in experiments using picrotoxin as a GABA inhibitor have suggested that such difficulties arise from the requirement that, for LTP to be induced, CA1 dendrites must be persistently and totally activated. Doublets used in this case represent a minimal burst, or level of post-synaptic stimulation for LTP induction that subsumes greater depolarizations. In vitro, synaptically induced bursts would correspond to regenerative electrical events in apical dendrites of pyramidal neurons. The same requirements for dendritic activation would be satisfied in vivo during the θ rhythm, which is present during active exploration. Therefore, GABA might serve as an engram modulator through the activation of the hippocampal θ rhythm. Effect of μ-opioid receptors on hippocampal memory activity. Hippocampal μ-opioid receptors (MOR) have been involved in the formation of memory associated with the abuse of opioid drugs. When chronically activated, and during programmed drug abstinence, MORs acutely modulate hippocampal synaptic plasticity. At the level of neuronal networks, MORs increase excitability of area CA1 by means of a disinhibition of pyramidal cells. The specific inhibitory interneuronal subtypes which become affected by activation of MORs are not known. Nevertheless, not all subtypes are inhibited and some subtypes preferentially express these receptors. In one study, the effect of activation of MORs on inhibitory patterns and propagation of excitatory activity in CA1 of rat hippocampus was investigated through cortical images created using voltage-sensitive dyes. MOR activation increased excitatory activity originated by the increased stimulating input to stratum oriens (i.e., Schäffer collateral and commissural [SCC] fibers, as well as the retrograde pathway), to stratum radiatum (i.e., SCC fibers) and to stratum lacunosum-moleculare (i.e., the perforant pathway and the thalamus). Increased excitatory activity was additionally facilitated by propagation through the neural network of area CA1. This was observed as a proportionally greater increment of amplitudes of excitatory activity in sites distant from the originally evoked activity.… [ABSTRACT FROM AUTHOR]